1 Introduction

NB for the reader

This is Markdown document of the submitted article ‘Aping the People’: Populist Identification as Mimesis in Narendra Modi’s Speeches.

2 Preparing the corpus for analysis

Preparation: Step 1

A dataframe is created. CSV and text files are in the same repository. Texts and CSVs are UTF8 formatted, CSV is comma separated.

setwd("C:/Users/jtmartelli/Google Drive/Textual_analysis/R/aping2")
txtvars <-read.csv("metadata.csv",stringsAsFactors = FALSE)
bodytexts <-readtext('*.txt')
bodytexts$id<-gsub('.txt','',bodytexts$doc_id) 
dataframe<-merge(bodytexts,txtvars,by='id')

Preparation: Step 2

A corpus called “workcorpus” is generated from the dataframe.

workcorpus <- corpus(dataframe)
texts(workcorpus) <- iconv(texts(workcorpus), from = "UTF-8", to = "ASCII", sub = "")

Preparation: Step 3

A sub-corpus called “subworkcorpus” is created from the corpus “workcorpus” in order to analyze only the speeches of the corpus.

#head(docvars(workcorpus))
subworkcorpus<-corpus_subset(workcorpus, format %in% c('speech'))
ndoc(subworkcorpus)
## [1] 4199

Preparation: Step 4

The sub-corpus “subworkcorpus” is tokenized.

tokssubworkcorpus <- tokens(subworkcorpus, remove_punct = FALSE, remove_numbers = FALSE, remove_symbols = FALSE, remove_separators = TRUE, remove_hyphens = FALSE, remove_url = FALSE, concatenator = "_")
head(tokssubworkcorpus[[1]], 50)
##  [1] "Friends"     "and"         "comrades"    ","           "Jai"        
##  [6] "Hind"        "!"           "Six"         "days"        "ago"        
## [11] ","           "my"          "colleagues"  "and"         "I"          
## [16] "sat"         "on"          "the"         "chairs"      "of"         
## [21] "high"        "office"      "in"          "the"         "Government" 
## [26] "of"          "India"       "."           "A"           "new"        
## [31] "Government"  "came"        "into"        "being"       "in"         
## [36] "this"        "ancient"     "land"        ","           "the"        
## [41] "Interim"     "or"          "Provisional" "Government"  "we"         
## [46] "called"      "it"          ","           "the"         "stepping"

Preparation: Step 5

Unigrams proxying entries of variables of interest are replaced by ngrams.

popngrams <- read.csv("C:/Users/jtmartelli/Google Drive/Textual_analysis/R/aping/dictionaries/popngrams.csv", as.is = TRUE, header = FALSE)
dicopopgram <- dictionary(split(popngrams[,2], popngrams[,1]))
ngramstokssubworkcorpus <- tokens_lookup(tokssubworkcorpus, dicopopgram, valuetype = 'glob', exclusive = FALSE, capkeys = FALSE, case_insensitive = TRUE)

Preparation: Step 6

A document-feature matrix is created from the tokenized corpus.

dfmtokssubworkcorpus <- dfm(ngramstokssubworkcorpus, remove_punct = FALSE, tolower = FALSE, dictionary_regex=TRUE, language = "english", stem = FALSE, clean = FALSE, verbose= TRUE) # if no ngram dictionary is loaded, then used the insert tokssubworkcorpus instead.

3 The analysis

Dictionaries

A dictionary of populist features containing five-level hierarchical entries (see Fig.2).

#Step 1: 
  #Dictionaries are imported. There are two dictionaries: 5-level dictionary (nested lists) used for the analysis and a flat list for comparison purposes (Pauwels 2011). Only the 5-level dictionary is used for the analysis.
popdicoH <- dictionary(file = "C:/Users/jtmartelli/Google Drive/Textual_analysis/R/aping2/dictionaries/populism.yml", tolower = FALSE) 
names(popdicoH) #that is the matrix one
## [1] "poprelatedC" "poprelatedE"
popdicoL <- dictionary(list(populism=c("elit*","consensus*","undemocratic*","referend*","currupt*","propagand*","politici*","deceit*","deceiv*","betray*","shame*","scandal*","truth*","dishonest*","establishm*","ruling*","absurd*", "arrogant*", "promis*", "promise*", "capitul*", "direct","mafia","freedom_of_expression","undemocratic","particrat*", "politic*","regime*","shameless","tradition*","people"))) #that is the list-wise dictionary using Pauwels (2011) list. 
#Step2:
  #Applying the dictionary to the DFM
popdicodfmHspeech1 <- dfm_lookup(dfmtokssubworkcorpus, dictionary = popdicoH, valuetype = "glob",  levels=1)
popdicodfmHspeech2 <- dfm_lookup(dfmtokssubworkcorpus, dictionary = popdicoH, valuetype = "glob",  levels=2)
popdicodfmHspeech3 <- dfm_lookup(dfmtokssubworkcorpus, dictionary = popdicoH, valuetype = "glob",  levels=3)
popdicodfmHspeech4 <- dfm_lookup(dfmtokssubworkcorpus, dictionary = popdicoH, valuetype = "glob",  levels=4)
popdicodfmHspeech5 <- dfm_lookup(dfmtokssubworkcorpus, dictionary = popdicoH, valuetype = "glob",  levels=5)

Computing the proportions of linguistic measures per PM for the five levels of the dictionary (1:5)

#In order to calculate proportions of linguistic measures among PMs, a column with the features that are not included in the dictionary is added in the DFM. 

keeponlydico <- tokens_select(ngramstokssubworkcorpus, pattern = popdicoH, valuetype = 'glob', case_insensitive = FALSE, selection = 'keep')
dfmkeeponlydico <- dfm(keeponlydico, remove_punct = FALSE, tolower = FALSE, dictionary_regex=TRUE, language = "english", stem = FALSE, clean = FALSE, verbose= TRUE)


onlytherest <- tokens_select(ngramstokssubworkcorpus, pattern = popdicoH, valuetype = 'glob', case_insensitive = FALSE, selection = 'remove')
dfmonlytherest <- dfm(onlytherest, remove_punct = FALSE, tolower = FALSE, dictionary_regex=TRUE, language = "english", stem = FALSE, clean = FALSE, verbose= TRUE)

u <-dfmonlytherest
U<-rowSums(u)

#Adding to the DFM a column for Prime Ministers and another one for the year of the speeches

catdfmkeeponlydico1 <- dfm_lookup(dfmkeeponlydico, dictionary = popdicoH, levels=1)

v1<-cbind(catdfmkeeponlydico1,U)
v2<-convert(cbind(dfmtokssubworkcorpus@docvars$year,v1),to="data.frame")
v3<-cbind(dfmtokssubworkcorpus@docvars$loc,v2)

colnames(v3)[1]<-"PM"
colnames(v3)[2]<-"Speech"
colnames(v3)[3]<-"Year"
colnames(v3)[6]<-"TheRest"

catdfmkeeponlydico2 <- dfm_lookup(dfmkeeponlydico, dictionary = popdicoH, levels=2)

v4<-cbind(catdfmkeeponlydico2,U)
v5<-convert(cbind(dfmtokssubworkcorpus@docvars$year,v4),to="data.frame")
v6<-cbind(dfmtokssubworkcorpus@docvars$loc,v5)

colnames(v6)[1]<-"PM"
colnames(v6)[2]<-"Speech"
colnames(v6)[3]<-"Year"
colnames(v6)[8]<-"TheRest"

catdfmkeeponlydico3 <- dfm_lookup(dfmkeeponlydico, dictionary = popdicoH, levels=3)

v7<-cbind(catdfmkeeponlydico3,U)
v8<-convert(cbind(dfmtokssubworkcorpus@docvars$year,v7),to="data.frame")
v9<-cbind(dfmtokssubworkcorpus@docvars$loc,v8)

colnames(v9)[1]<-"PM"
colnames(v9)[2]<-"Speech"
colnames(v9)[3]<-"Year"
colnames(v9)[14]<-"TheRest"

catdfmkeeponlydico4 <- dfm_lookup(dfmkeeponlydico, dictionary = popdicoH, levels=4)

v10<-cbind(catdfmkeeponlydico4,U)
v11<-convert(cbind(dfmtokssubworkcorpus@docvars$year,v10),to="data.frame")
v12<-cbind(dfmtokssubworkcorpus@docvars$loc,v11)

colnames(v12)[1]<-"PM"
colnames(v12)[2]<-"Speech"
colnames(v12)[3]<-"Year"
colnames(v12)[54]<-"TheRest"

catdfmkeeponlydico5 <- dfm_lookup(dfmkeeponlydico, dictionary = popdicoH, levels=5)

v13<-cbind(catdfmkeeponlydico5,U)
v14<-convert(cbind(dfmtokssubworkcorpus@docvars$year,v13),to="data.frame")
v15<-cbind(dfmtokssubworkcorpus@docvars$loc,v14)

colnames(v15)[1]<-"PM"
colnames(v15)[2]<-"Speech"
colnames(v15)[3]<-"Year"
colnames(v15)[8]<-"TheRest"

#Computing the percentage of each column for the different levels of the dictionary

v16 <- v3
for(i in 1:nrow(v3)){
  for(j in 4:ncol(v3)){
    v16[i,j]<-v3[i,j]/sum(v3[i,(4:ncol(v3))]) 
  }
}

v17 <- v6
for(i in 1:nrow(v6)){
  for(j in 4:ncol(v6)){
    v17[i,j]<-v6[i,j]/sum(v6[i,(4:ncol(v6))]) 
  }
}

v18 <- v9
for(i in 1:nrow(v9)){
  for(j in 4:ncol(v9)){
    v18[i,j]<-v9[i,j]/sum(v9[i,(4:ncol(v9))]) 
  }
}

v19 <- v12
for(i in 1:nrow(v12)){
  for(j in 4:ncol(v12)){
    v19[i,j]<-v12[i,j]/sum(v12[i,(4:ncol(v12))]) 
  }
}

v20 <- v15
for(i in 1:nrow(v15)){
  for(j in 4:ncol(v15)){
    v20[i,j]<-v15[i,j]/sum(v15[i,(4:ncol(v15))]) 
  }
}

#Grouping dictionary entries in three groups according to their relashionship with populism: prone, averse, neutral

#hypothesis A

proneA<-cbind(v17$popproneC)
averseA<-cbind(v17$popaverseC)
neutralA<-cbind(v17$popproneE+v17$popaverseE+v17$TheRest)

#hypothesis B

proneB<-cbind(v17$popproneE)
averseB<-cbind(v17$popaverseE)
neutralB<-cbind(v17$popproneC+v17$popaverseC+v17$TheRest)

#hypothesis A+B

proneAB<-cbind(v17$popproneC+v17$popproneE)
averseAB<-cbind(v17$popaverseC+v17$popaverseE)
neutralAB<-cbind(v17$TheRest)

#plotting results

plot(v17$PM, proneA, main="H1: Populist prone features across PMs (a)", sub="H1 variables: Deintermediation+Intimacy+Simplicity",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, averseA, main="H1: Populist averse features across PMs (b)", sub="H1 variables: Deintermediation+Intimacy+Simplicity",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, neutralA, main="H1: Populist neutral features across PMs (c)", sub="H1 variables: Deintermediation+Intimacy+Simplicity",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, proneB, main="H2: Populist prone features across PMs (d)", sub="H2 variables: Acrimonious emotions+Authority",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, averseB, main="H2: Populist averse features across PMs (e)", sub="H2 variables: Acrimonious emotions+Authority",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, neutralB, main="H2: Populist neutral features across PMs (f)", sub="H2 variables: Acrimonious emotions+Authority",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, proneAB, main="Populist prone", sub="H1+H2",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, averseAB, main="Populist averse", sub="H1+H2",
  xlab="Prime Ministers", ylab="% of features")

plot(v17$PM, neutralAB, main="Populist neutral", sub="H1+H2",
  xlab="Prime Ministers", ylab="% of features")

#Computing Anovas for the selected variables of the different levels of the dictionary

v16t<-v16[,-1:-3]
v16t<-as.matrix(v16t)
PMs<-as.factor(v16$PM)
resultnewanova1 <- aov(v16t~PMs)
#summary(resultnewanova1)
#coefficients(resultnewanova1)

v17t<-v17[,-1:-3]
v17t<-as.matrix(v17t)
PMs<-as.factor(v17$PM)
resultnewanova2 <- aov(v17t~PMs)
#summary(resultnewanova2)
#coefficients(resultnewanova2)
v17a<-cbind(proneA,averseA,neutralA)
PMs<-as.factor(v17$PM)
resultnewanova2a <- aov(v17a~PMs)
#summary(resultnewanova2a)
#coefficients(resultnewanova2a)
v17b<-cbind(proneB,averseB,neutralB)
PMs<-as.factor(v17$PM)
resultnewanova2b <- aov(v17b~PMs)
#summary(resultnewanova2b)
#coefficients(resultnewanova2b)
v17ab<-cbind(proneAB,averseAB,neutralAB)
PMs<-as.factor(v17$PM)
resultnewanova2ab <- aov(v17ab~PMs)
#summary(resultnewanova2ab)
#coefficients(resultnewanova2ab)

v18t<-v18[,-1:-3]
v18t<-as.matrix(v18t)
PMs<-as.factor(v18$PM)
resultnewanova3 <- aov(v18t~PMs)
#summary(resultnewanova3)
#coefficients(resultnewanova3)

v19t<-v19[,-1:-3]
v19t<-as.matrix(v19t)
PMs<-as.factor(v19$PM)
resultnewanova4 <- aov(v19t~PMs)
#summary(resultnewanova4)
#coefficients(resultnewanova4)

v20t<-v20[,-1:-3]
v20t<-as.matrix(v20t)
PMs<-as.factor(v20$PM)
resultnewanova5 <- aov(v20t~PMs)
#summary(resultnewanova5)
#coefficients(resultnewanova5)

#Extracting the F values from the Anovas for the various levels of the dictionary

fvalues1<-c()
for (f in 1:3){
  fvalues1 <- c(fvalues1,summary.aov(resultnewanova1)[[f]][["F value"]][[1]])
}
fvalues1<-round(fvalues1,digits=2)
#fvalues1

fvalues2<-c()
for (f in 1:5){
  fvalues2 <- c(fvalues2,summary.aov(resultnewanova2)[[f]][["F value"]][[1]])
}
fvalues2<-round(fvalues2,digits=2)
#fvalues2

fvalues2a<-c()
for (f in 1:3){
  fvalues2a <- c(fvalues2a,summary.aov(resultnewanova2a)[[f]][["F value"]][[1]])
}
fvalues2a<-round(fvalues2a,digits=2)
#fvalues2a

fvalues2b<-c()
for (f in 1:3){
  fvalues2b <- c(fvalues2b,summary.aov(resultnewanova2b)[[f]][["F value"]][[1]])
}
fvalues2b<-round(fvalues2b,digits=2)
#fvalues2b

fvalues2ab<-c()
for (f in 1:3){
  fvalues2ab <- c(fvalues2ab,summary.aov(resultnewanova2ab)[[f]][["F value"]][[1]])
}
fvalues2ab<-round(fvalues2ab,digits=2)
#fvalues2ab

fvalues3<-c()
for (f in 1:11){
  fvalues3 <- c(fvalues3,summary.aov(resultnewanova3)[[f]][["F value"]][[1]])
}
fvalues3<-round(fvalues3,digits=2)
#fvalues3

fvalues4<-c()
for (f in 1:51){
  fvalues4 <- c(fvalues4,summary.aov(resultnewanova4)[[f]][["F value"]][[1]])
}
fvalues4<-round(fvalues4,digits=2)
#fvalues4

fvalues5<-c()
for (f in 1:5){
  fvalues5 <- c(fvalues5,summary.aov(resultnewanova5)[[f]][["F value"]][[1]])
}
fvalues5<-round(fvalues5,digits=2)
#fvalues5

  #Extracting the effect sizes estimates over every column of the various dictionrary levels

resultanovapm1<-c()
for(i in 1:3)
{
  anovatemp<-aov(v16t[,i]~as.factor(v16$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm1<-c(resultanovapm1,correctionnumeric)
}
#resultanovapm1

resultanovapm2<-c()
for(i in 1:5)
{
  anovatemp<-aov(v17t[,i]~as.factor(v17$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm2<-c(resultanovapm2,correctionnumeric)
}
#resultanovapm2

resultanovapm2a<-c()
for(i in 1:3)
{
  anovatemp<-aov(v17a[,i]~as.factor(v17$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm2a<-c(resultanovapm2a,correctionnumeric)
}
#resultanovapm2a

resultanovapm2b<-c()
for(i in 1:3)
{
  anovatemp<-aov(v17b[,i]~as.factor(v17$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm2b<-c(resultanovapm2b,correctionnumeric)
}
#resultanovapm2b

resultanovapm2ab<-c()
for(i in 1:3)
{
  anovatemp<-aov(v17ab[,i]~as.factor(v17$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm2ab<-c(resultanovapm2ab,correctionnumeric)
}
#resultanovapm2ab

resultanovapm3<-c()
for(i in 1:11)
{
  anovatemp<-aov(v18t[,i]~as.factor(v18$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm3<-c(resultanovapm3,correctionnumeric)
}
#resultanovapm3

resultanovapm4<-c()
for(i in 1:51)
{
  anovatemp<-aov(v19t[,i]~as.factor(v19$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm4<-c(resultanovapm4,correctionnumeric)
}
#resultanovapm4

resultanovapm5<-c()
for(i in 1:5)
{
  anovatemp<-aov(v20t[,i]~as.factor(v20$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm5<-c(resultanovapm5,correctionnumeric)
}
#resultanovapm5

#Labelling the vectors containing the effect sizes and the F values
fvaluesfordf1<-c("F*",fvalues1)
anovaresultsfordf1<-c("n^2",resultanovapm1)

fvaluesfordf2<-c("F*",fvalues2)
anovaresultsfordf2<-c("n^2",resultanovapm2)

fvaluesfordf2a<-c("F*",fvalues2a)
anovaresultsfordf2a<-c("n^2",resultanovapm2a)

fvaluesfordf2b<-c("F*",fvalues2b)
anovaresultsfordf2b<-c("n^2",resultanovapm2b)

fvaluesfordf2ab<-c("F*",fvalues2ab)
anovaresultsfordf2ab<-c("n^2",resultanovapm2ab)

fvaluesfordf3<-c("F*",fvalues3)
anovaresultsfordf3<-c("n^2",resultanovapm3)

fvaluesfordf4<-c("F*",fvalues4)
anovaresultsfordf4<-c("n^2",resultanovapm4)

fvaluesfordf5<-c("F*",fvalues5)
anovaresultsfordf5<-c("n^2",resultanovapm5)

#Removing/adding unnecessary columns

v16u<-v16[,-2:-3]
v17u<-v17[,-2:-3]

v17ua<-cbind(as.character(v17$PM),v17a)
v17ub<-cbind(as.character(v17$PM),v17b)
v17uab<-cbind(as.character(v17$PM),v17ab)

v18u<-v18[,-2:-3]
v19u<-v19[,-2:-3]
v20u<-v20[,-2:-3]


#Grouping the results by Prime Minister


v16v<-aggregate(v16u, by=list(v16u$PM),FUN=mean,na.action = na.omit)
v16v$PM <- NULL
colnames(v16v)[1]<-"PM"

v17v<-aggregate(v17u, by=list(v17u$PM),FUN=mean,na.action = na.omit)
v17v$PM <- NULL
colnames(v17v)[1]<-"PM"

v17va<-aggregate(v17a, by=list(v17u$PM),FUN=mean,na.action = na.omit)
colnames(v17va)[1]<-"PM"
colnames(v17va)[2]<-"proneA"
colnames(v17va)[3]<-"averseA"
colnames(v17va)[4]<-"neutralA"

v17vb<-aggregate(v17b, by=list(v17u$PM),FUN=mean,na.action = na.omit)
colnames(v17vb)[1]<-"PM"
colnames(v17vb)[2]<-"proneB"
colnames(v17vb)[3]<-"averseB"
colnames(v17vb)[4]<-"neutralB"

v17vab<-aggregate(v17ab, by=list(v17u$PM),FUN=mean,na.action = na.omit)
colnames(v17vab)[1]<-"PM"
colnames(v17vab)[2]<-"proneAB"
colnames(v17vab)[3]<-"averseAB"
colnames(v17vab)[4]<-"neutralAB"

v18v<-aggregate(v18u, by=list(v18u$PM),FUN=mean,na.action = na.omit)
v18v$PM <- NULL
colnames(v18v)[1]<-"PM"

v19v<-aggregate(v19u, by=list(v19u$PM),FUN=mean,na.action = na.omit)
v19v$PM <- NULL
colnames(v19v)[1]<-"PM"

v20v<-aggregate(v20u, by=list(v20u$PM),FUN=mean,na.action = na.omit)
v20v$PM <- NULL
colnames(v20v)[1]<-"PM"


#Rounding the results

v16V <- v16v
for(i in 1:nrow(v16V)){
  for(j in 2:ncol(v16V)){
v16V[i,j]<-round(v16V[i,j],digits=3)
  }
}

v17V <- v17v
for(i in 1:nrow(v17V)){
  for(j in 2:ncol(v17V)){
v17V[i,j]<-round(v17V[i,j],digits=3)
  }
}

v17VA <- v17va
for(i in 1:nrow(v17VA)){
  for(j in 2:ncol(v17VA)){
v17VA[i,j]<-round(as.numeric(v17VA[i,j]),digits=3)
  }
}

v17VB <- v17vb
for(i in 1:nrow(v17VB)){
  for(j in 2:ncol(v17VB)){
v17VB[i,j]<-round(as.numeric(v17VB[i,j]),digits=3)
  }
}

v17VAB <- v17vab
for(i in 1:nrow(v17VAB)){
  for(j in 2:ncol(v17VAB)){
v17VAB[i,j]<-round(as.numeric(v17VAB[i,j]),digits=3)
  }
}

v18V <- v18v
for(i in 1:nrow(v18V)){
  for(j in 2:ncol(v18V)){
v18V[i,j]<-round(v18V[i,j],digits=3)
  }
}


v19V <- v19v
for(i in 1:nrow(v19V)){
  for(j in 2:ncol(v19V)){
v19V[i,j]<-round(v19V[i,j],digits=3)
  }
}


v20V <- v20v
for(i in 1:nrow(v20V)){
  for(j in 2:ncol(v20V)){
v20V[i,j]<-round(v20V[i,j],digits=3)
  }
}

#Putting the Anova and effect sizes at the end of the tables of proportions for each dictionary level (Table 2, base for Figure 3)

x<-rbind(as.matrix(v16V),fvaluesfordf1,anovaresultsfordf1)
pretable1 <- x[,-1]
rownames(pretable1) <- x[,1]

x<-rbind(as.matrix(v17V),fvaluesfordf2,anovaresultsfordf2)
pretable2 <- x[,-1]
rownames(pretable2) <- x[,1]

x<-rbind(as.matrix(v17VA),fvaluesfordf2a,anovaresultsfordf2a)
pretable2a <- x[,-1]
rownames(pretable2a) <- x[,1]

x<-rbind(as.matrix(v17VB),fvaluesfordf2b,anovaresultsfordf2b)
pretable2b <- x[,-1]
rownames(pretable2b) <- x[,1]

x<-rbind(as.matrix(v17VAB),fvaluesfordf2ab,anovaresultsfordf2ab)
pretable2ab <- x[,-1]
rownames(pretable2ab) <- x[,1]

x<-rbind(as.matrix(v18V),fvaluesfordf3,anovaresultsfordf3)
pretable3 <- x[,-1]
rownames(pretable3) <- x[,1]

x<-rbind(as.matrix(v19V),fvaluesfordf4,anovaresultsfordf4)
pretable4 <- x[,-1]
rownames(pretable4) <- x[,1]

x<-rbind(as.matrix(v20V),fvaluesfordf5,anovaresultsfordf5)
pretable5 <- x[,-1]
rownames(pretable5) <- x[,1]

Computing the ratios of prone/averse features of linguistic measures per PM for the various levels of the dictionary

#The ratio populist prone/populist averse (dictionary level 2) is generated for the two model specifications (Hypothesis 1 and 2)

popproneC <- cbind(v17$popproneC)
popaverseC <- cbind(v17$popaverseC)
ratioC <- as.matrix(popproneC/popaverseC)

popproneE <- cbind(v17$popproneE)
popaverseE <- cbind(v17$popaverseE)
ratioE <- as.matrix(popproneE/popaverseE)

v21<-v17[,-4:-8]
ratiosCE <- data.frame(v21,ratioC,ratioE)

#The ratios prone/averse for other dictionary levels (H1: Deintermediation+Intimacy+Simplicity, H2: Acrimonious emotions+Authority) are generated

deintermediationprone <- cbind(v18$deintermediationprone)
deintermediationaverse <- cbind(v18$deintermediationaverse)
H1.deintermediation<- as.matrix(deintermediationprone/deintermediationaverse)

intimacyprone <- cbind(v18$intimacyprone)
intimacyaverse <- cbind(v18$intimacyaverse)
H1.intimacy<- as.matrix(intimacyprone/intimacyaverse)

simplicityprone <- cbind(v18$simplicityprone)
simplicityaverse <- cbind(v18$simplicityaverse)
H1.simplicity<- as.matrix(simplicityprone/simplicityaverse)

emoacrimonyprone <- cbind(v18$emoacrimonyprone)
emoacrimonyaverse <- cbind(v18$emoacrimonyaverse)
H2.neg.emotions<- as.matrix(emoacrimonyprone/emoacrimonyaverse)

authorityprone <- cbind(v18$authorityprone)
authorityaverse <- cbind(v18$authorityaverse)
H2.authority<- as.matrix(authorityprone/authorityaverse)

v22<-v18[,-4:-14]
varsCE <- data.frame(v22,H1.deintermediation,H1.intimacy,H1.simplicity,H2.neg.emotions,H2.authority)

#Plotting results for the populist prone/populist averse ratio (dictionary level 2) for H1 and H2 (base for Figure 4)

plot(v21$PM, ratioC, main="H1: Ratio of prone/averse populist features across PMs (a/b)", sub="H1 variables: Deintermediation+Intimacy+Simplicity", xlab="Prime Ministers", ylab="Ratio")

plot(v21$PM, ratioE, main="H2: Ratio of prone/averse populist features across PMs (d/e)", sub="H2 variables: Acrimonious emotions+Authority", xlab="Prime Ministers", ylab="Ratio", ylim = c(0, 9))

#Plotting results for the prone/averse ratios (H1, H2) for other dictionary levels

plot(v22$PM, H1.deintermediation, main="Ratio of prone/averse deintermediation features across PMs", sub="H1", xlab="Prime Ministers", ylab="Ratio", ylim = c(0, 5))

plot(v22$PM, H1.intimacy, main="Ratio of prone/averse intimacy features across PMs", sub="H1", xlab="Prime Ministers", ylab="Ratio", ylim = c(0, 32))

plot(v22$PM, H1.simplicity, main="Ratio of prone/averse simplicity features across PMs", sub="H1", xlab="Prime Ministers", ylab="Ratio", ylim = c(0, 2))

plot(v22$PM, H2.neg.emotions, main="Ratio of prone/averse emotionally acrimonious features across PMs", sub="H2", xlab="Prime Ministers", ylab="Ratio", ylim = c(0, 11))

plot(v22$PM, H2.authority, main="Ratio of prone/averse authority features across PMs", sub="H2", xlab="Prime Ministers", ylab="Ratio", ylim = c(0, 40))

#Grouping the results by Prime Minister

ratiosCEv<-aggregate(ratiosCE, by=list(ratiosCE$PM),FUN=mean,na.action = na.omit)
ratiosCEv$PM <- NULL
ratiosCEv$Speech <- NULL
ratiosCEv$Year <- NULL
colnames(ratiosCEv)[1]<-"PM"

#Computing Anovas for the populist prone/populist averse ratios (dictionary level 2) for H1 and H2

ratiosCEt<-ratiosCE[,-1:-3]
ratiosCEt<-as.matrix(ratiosCEt)
PMs<-as.factor(ratiosCE$PM)
resultnewanova6 <- aov(ratiosCEt~PMs)
#summary(resultnewanova6)
#coefficients(resultnewanova6)

#Extracting the F values from the Anovas for the various dictionary levels

fvalues6<-c()
for (f in 1:2){
  fvalues6 <- c(fvalues6,summary.aov(resultnewanova6)[[f]][["F value"]][[1]])
}
fvalues6<-round(fvalues6,digits=3)
#fvalues6

#Extracting the effect sizes estimates over every column of the various dictionary levels

resultanovapm6<-c()
for(i in 1:2)
{
  anovatemp<-aov(ratiosCEt[,i]~as.factor(ratiosCE$PM))
  correctiontemp<-eta_sq(anovatemp)
  correctionnumeric<-round(as.numeric(as.character(correctiontemp[2])),digits=3)
  resultanovapm6<-c(resultanovapm6,correctionnumeric)
}
#resultanovapm6

#Labelling the vectors containing the effect sizes and the F values

fvaluesfordf6<-c("F*",fvalues6)
anovaresultsfordf6<-c("n^2",resultanovapm6)

#Rounding the results

ratiosCEV <- ratiosCEv
for(i in 1:nrow(ratiosCEV)){
  for(j in 2:ncol(ratiosCEV)){
ratiosCEV[i,j]<-round(ratiosCEV[i,j],digits=3)
  }
}

#Putting the Anova results and effect sizes at the end of the table of prone/populist averse ratios (dictionary level 2) for H1 and H2

x<-rbind(as.matrix(ratiosCEV),fvaluesfordf6,anovaresultsfordf6)
pretable6 <- x[,-1]
rownames(pretable6) <- x[,1]

Computing the ratios of prone/averse features of linguistic measures time-wise for the various levels of the dictionary

#A generalized linear model is computed on the populist categories (dictionary level 4) for H1 and H2

lm.h1a <- glm(v19$Year ~ v19$longwords + v19$cognitivepro + v19$conceptualnotion + v19$principles + v19$institutionalpro + v19$politicalparties + v19$we + v19$assent + v19$insight + v19$thirdsp + v19$family + v19$religion + v19$gendered + v19$leisure + v19$body + v19$health + v19$friends + v19$home + v19$pronouns + v19$phyfeel + v19$foodfarm + v19$money + v19$festival + v19$elite + v19$nonelite + v19$shortsentences + v19$numbers + v19$pastfocus + v19$culturalnationalism + v19$time + v19$iyou + v19$electoralpro + v19$personalgov + v19$rhetoricalq + v19$futurefocus + v19$persreward + v19$persreward + v19$motion)
#summary(lm.h1a)

lm.h2a <- glm(v19$Year ~ v19$positiveemo + v19$tentative + v19$negativeemo + v19$anger + v19$anxiety + v19$sadness + v19$swearwords + v19$risk + v19$communities + v19$conflict + v19$certainty + v19$achieve + v19$power)
#summary(lm.h2a)

#A generalized linear model is computed on the variables (dicitonary level 3)

lm.h1b <- glm(v18$Year ~  v18$simplicityaverse + v18$deintermediationaverse + v18$intimacyaverse + v18$intimacyprone + v18$simplicityprone + v18$deintermediationprone)
#summary(lm.h1b)

lm.h2b <- glm(v18$Year ~ v18$emoacrimonyaverse + v18$authorityaverse + v18$emoacrimonyprone + v18$authorityprone)
#summary(lm.h2b)

#A linear model is computed on the populist ratios (dictionary level 2)

lm.h1c <- lm(ratiosCE$Year ~ ratiosCE$ratioC)
#summary(lm.h1c)

lm.h2c <- lm(ratiosCE$Year ~ ratiosCE$ratioE)
#summary(lm.h2c)

y<-ratiosCE$ratioC
#plot(y~as.numeric(ratiosCE$Year))
z<-ratiosCE$ratioE
#plot(e~as.numeric(ratiosCE$Year))

#Compute the mean of scores for each year
avplotyear<-c() #empty vector
sdplotyear<-c()
for(i in unique(ratiosCE$Year)){ #takes all the years mentioned once
  allratiosperyear<-ratiosCE[ratiosCE[,3]==i,4] #finds out all the rows in column 4 with year == i
  sdperyear<-sd(allratiosperyear)
  averageplot<-sum(allratiosperyear)/length(allratiosperyear) #computes the average for each year
  avplotyear<-rbind(avplotyear,c(i,averageplot))#binds year and averages
  sdplotyear<-rbind(sdplotyear,c(i,sdperyear))#binds year and standard deviations
}

avplotyear2<-c() #empty vector
sdplotyear2<-c()
for(i in unique(ratiosCE$Year)){ #takes all the years mentioned once
  allratiosperyear2<-ratiosCE[ratiosCE[,3]==i,5] #finds out all the rows in column 4 with year == i
  sdperyear2<-sd(allratiosperyear2)
  averageplot2<-sum(allratiosperyear2)/length(allratiosperyear2) #computes the average for each year
  avplotyear2<-rbind(avplotyear2,c(i,averageplot2))#binds year and averages
  sdplotyear2<-rbind(sdplotyear2,c(i,sdperyear2))#binds year and standard deviations
}

Figures

#RUN FIGURES SEPARATELY

#Preparing Figure 1

colourchart<-c("cornflowerblue","darkblue","gold1","red1","cadetblue1","green4","green2","blue2","darkorange4","cyan3","darkorange2")

dfmperpm <- dfm_group(dfmtokssubworkcorpus, groups = "loc")
npm<-ntoken(dfmperpm)
npm<-as.data.frame(npm)
PmOrder<-c("nehru","indira","desai","charan","rajiv","vpsingh","chandra","rao","vajpayee","mms","modi")
npm<-setDT(npm, keep.rownames = TRUE)[]
rn<-as.matrix(npm$rn)
npmO<-npm[match(PmOrder, rn),]

namespms<-c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi")

barplot(npmO$npm, main="Distribution of features by Prime Ministers in the DIPMS corpus", sub="(1946-2019)", xlab="Prime Ministers", ylab="Number of features", col=c("cornflowerblue","darkblue","gold1","red1","cadetblue1","green4","green2","blue2","darkorange4","cyan3","darkorange2"),names.arg=namespms, cex.main=1.5)

#Figure 1 (title: Distribution of Features by Year and Prime Ministers in the DIPMS Corpus)

dfmperyear <- dfm_group(dfmtokssubworkcorpus, groups = "year")
npy<-ntoken(dfmperyear)

year_vars <- c(1946:2019)
myColors <- ifelse(year_vars >= 1946 & year_vars <= 1964 , "cornflowerblue" , 
              ifelse(year_vars >= 1964 & year_vars <= 1975 , "darkblue",
              ifelse(year_vars >= 1979 & year_vars <= 1983 , "darkblue",
                ifelse(year_vars >= 1976 & year_vars <= 1977 , "gold1",
                  ifelse(year_vars == 1978, "red1",  
                    ifelse(year_vars >= 1984 & year_vars <= 1987, "cadetblue1",
                      ifelse(year_vars == 1988, "green4",
                        ifelse(year_vars == 1989, "green2",
                          ifelse(year_vars >= 1990 & year_vars <= 1994, "blue2",  
                            ifelse(year_vars >= 1995 & year_vars <= 2000, "darkorange4",
                              ifelse(year_vars >= 2001 & year_vars <= 2010, "cyan3",
                                ifelse(year_vars >= 2011 & year_vars <= 2019, "darkorange2",
                                "grey90" ))))))))))))

barplot(npy, main="Distribution of features by year and Prime Ministers in the DIPMS corpus", sub="(1964-2019: The years of term transitions are rounded)", xlab="Years", ylab="Number of features", las=2, mgp=c(3.18,1,0), col=myColors, cex.main=1.5) 

#sub="(J.Nehru 46-64, I.Gandhi 66-77/80-84, M.Desai 77-79, C.Singh 79, R.Gandhi 84-89, VP.Singh 89-90, C.Shekhar 90-91, PVN.Rao 91-95, AB.Vajpayee 98-04, M.Singh 04-14, N.Modi 14-19)", 

plot(1,1,type="n",axes=FALSE,xlab="",ylab="")#empty plot for legend
legend(x="top",inset=0,
       legend=c("J.Nehru (1946-1964)","I.Gandhi (1966-1977)","M.Desai (1977-1979)","C.Singh (1979)","R.Gandhi (1984-1989)","VP.Singh (1989-1990)","C.Shekhar (1990-1991)","PVN.Rao (1991-1995)","AB.Vajpayee (1998-2004)","M.Singh (2004-2014)","N.Modi (2014-2019)"),
       col=colourchart,lwd=5,cex=1,horiz=FALSE) #size of the legend

#Figure 2 (title: Reingold-Tilford Tree Network Diagram of the 5-Level Nested Lists of the Dictionary Along with its 15 First Entries)

treepop<-read_yaml(file = "C:/Users/jtmartelli/Google Drive/Textual_analysis/R/aping2/dictionaries/tree.yml", fileEncoding = "UTF-8")
treepopNode <- as.Node(treepop)
#plot(treepopNode)
print(treepopNode, limit=15)
##                            levelName
## 1  Root                             
## 2   ¦--Populist mimesis(hypothesis1)
## 3   ¦   ¦--Averse(a)                
## 4   ¦   ¦   ¦--Deintermediation(a)  
## 5   ¦   ¦   ¦   ¦--assent           
## 6   ¦   ¦   ¦   ¦   ¦--extension    
## 7   ¦   ¦   ¦   ¦   °--seed         
## 8   ¦   ¦   ¦   ¦--insight          
## 9   ¦   ¦   ¦   ¦   ¦--extension    
## 10  ¦   ¦   ¦   ¦   °--seed         
## 11  ¦   ¦   ¦   ¦--institpro        
## 12  ¦   ¦   ¦   ¦   °--adhoc        
## 13  ¦   ¦   ¦   °--parties          
## 14  ¦   ¦   ¦       °--adhoc        
## 15  ¦   ¦   °--... 2 nodes w/ 11 sub
## 16  ¦   °--... 1 nodes w/ 86 sub    
## 17  °--... 1 nodes w/ 131 sub
useRtreeList <- ToListExplicit(treepopNode, unname = TRUE)
radialNetwork(useRtreeList, fontSize = 13)
#Figure 3 (title: Proportions of the Populist Categories (Level 4 of the Dictionary) Among PMs)

ColumnNames<-names(v19v)
#tabletitle<-ColumnNames[-1] #titles 
tabletitle<-c("Assent","Insight","Institutional processes","Political parties", "We", "Cognitive processes", "Conceptual notions", "Long words", "Democratic principles","Electoral processes", "Future focus", "I and you", "Motion", "Personalized governance", "Personalized rewards", "Rhetorical questions", "Body", "Family", "Food and farming", "Friends", "Gendered references", "Health", "Home", "Leisure", "Money", "Physical feel", "Pronouns", "Religion", "Third-person", "Cultural nationalism", "Elites", "Festival", "Non-elites", "Numbers", "Past focus", "Short sentences", "Time", "Tentative", "Positive emotions", "Achieve", "Certainty", "Power", "Anger", "Anxiety","Community references", "Conflict", "Negative emotions", "Risk", "Sadness", "Swear words", "The rest")

#tabletitle[1]<-"Institutional Processes"#Just changes first
#tabletitle<-c("Institutional Processes","Political Parties")#Change all by putting names in the vector as text. NB: it will work only if there is a vector of all 51 entries.

RowOrder<-c(7,4,3,2,8,11,1,9,10,5,6)

#for(i in c(3,5,7,9)) #If it is needed to pull out specific columns

for(i in 2:52)#all columns
{ 
  
  FreqValues<-as.numeric(as.character(v19v[,i])) 
  par(mar=c(0.5,2,1,1))
  plot(1:length(FreqValues),FreqValues,mgp = c(3, 1, 0),xaxt='n',xlab="",ylab="Relative Frequency",main=tabletitle[i-1],type='n',las=0,ylim=c(0,max(FreqValues)),cex.main=2)
#axis(2,at=c(0,max(FreqValues)),labels=c(0,round(max(FreqValues),digits=2)))
  
   for(k in 1:11)
 {
  
  segments(k,0,k,FreqValues[RowOrder[k]],lwd=4,col=colourchart[k]) 
 }
  
}

plot(1,1,type="n",axes=FALSE,xlab="",ylab="")##empty plot for legend
legend(x="top",inset=0,
       legend=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"),
       col=colourchart,lwd=5,cex=1,horiz=FALSE) #size of the legend

#Figures 4a and 4b (title: Ratio of Prone/Averse Populist Features Across PMs for Model Specifications H1 and H2 [a/b & c/d]

x1  = factor(v21$PM, levels=c("nehru","indira","desai","charan","rajiv","vpsingh","chandra","rao","vajpayee","mms","modi"))


myColors <- ifelse(levels(x1)=="nehru" , "cornflowerblue" , 
              ifelse(levels(x1)=="indira", "darkblue",
                ifelse(levels(x1)=="desai", "gold1",
                  ifelse(levels(x1)=="charan", "red1",  
                    ifelse(levels(x1)=="rajiv", "cadetblue1",
                      ifelse(levels(x1)=="vpsingh", "green4",
                        ifelse(levels(x1)=="chandra", "green2",
                          ifelse(levels(x1)=="rao", "blue2",  
                            ifelse(levels(x1)=="vajpayee", "darkorange4",
                              ifelse(levels(x1)=="mms", "cyan3",
                                ifelse(levels(x1)=="modi", "darkorange2",
                                "grey90" )))))))))))
                
              
plot(x1, ratioC, main="H1: Ratio of prone/averse populist features across PMs (a/b)", sub="H1 variables: Deintermediation+Intimacy+Simplicity", xlab="Prime Ministers", ylab="Ratio", xaxt = "n",col=myColors, cex.main=1.5)
#if not ordered replace x1 with v21$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

plot(x1, proneA, main="H1: Populist prone features across PMs (a)", sub="H1 variables: Deintermediation+Intimacy+Simplicity",
  xlab="Prime Ministers", ylab="% of features", xaxt = "n",col=myColors, cex.main=1.5) #if not ordered replace x1 with v17$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

plot(x1, averseA, main="H1: Populist averse features across PMs (b)", sub="H1 variables: Deintermediation+Intimacy+Simplicity",
  xlab="Prime Ministers", ylab="% of features", xaxt = "n",col=myColors, cex.main=1.5) #if not ordered replace x1 with v17$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

plot(x1, neutralA, main="H1: Populist neutral features across PMs (c)", sub="H1 variables: Deintermediation+Intimacy+Simplicity",
  xlab="Prime Ministers", ylab="% of features", xaxt = "n",col=myColors, cex.main=1.5) #if not ordered replace x1 with v17$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

plot(x1, ratioE, main="H2: Ratio of prone/averse populist features across PMs (d/e)", sub="H2 variables: Acrimonious emotions+Authority", xlab="Prime Ministers", ylab="Ratio", ylim = c(0, 9), xaxt = "n",col=myColors, cex.main=1.5) #if not ordered replace x1 with v21$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

plot(x1, proneB, main="H2: Populist prone features across PMs (d)", sub="H2 variables: Acrimonious emotions+Authority",
  xlab="Prime Ministers", ylab="% of features", xaxt = "n",col=myColors, cex.main=1.5) #if not ordered replace x1 with v17$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

plot(x1, averseB, main="H2: Populist averse features across PMs (e)", sub="H2 variables: Acrimonious emotions+Authority",
  xlab="Prime Ministers", ylab="% of features", xaxt = "n",col=myColors, cex.main=1.5) #if not ordered replace x1 with v17$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

plot(x1, neutralB, main="H2: Populist neutral features across PMs (f)", sub="H2 variables: Acrimonious emotions+Authority",
  xlab="Prime Ministers", ylab="% of features", xaxt = "n",col=myColors, cex.main=1.5) #if not ordered replace x1 with v17$PM
axis(1, at=1:11, labels=c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi"))

#Figure 5 (title: Year-wise Populist Ratios Among PMs for Model Specifications H1 and H2)

myColors <- ifelse(year_vars >= 1946 & year_vars <= 1964 , "cornflowerblue" , 
              ifelse(year_vars >= 1964 & year_vars <= 1975 , "darkblue",
              ifelse(year_vars >= 1979 & year_vars <= 1983 , "darkblue",
                ifelse(year_vars >= 1976 & year_vars <= 1977 , "gold1",
                  ifelse(year_vars == 1978, "red1",  
                    ifelse(year_vars >= 1984 & year_vars <= 1987, "cadetblue1",
                      ifelse(year_vars == 1988, "green4",
                        ifelse(year_vars == 1989, "green2",
                          ifelse(year_vars >= 1990 & year_vars <= 1994, "blue2",  
                            ifelse(year_vars >= 1995 & year_vars <= 2000, "darkorange4",
                              ifelse(year_vars >= 2001 & year_vars <= 2010, "cyan3",
                                ifelse(year_vars >= 2011 & year_vars <= 2019, "darkorange2",
                                "grey90" ))))))))))))

plot(y~as.numeric(ratiosCE$Year),data=ratiosCE, ylim=c(0.5,3.8),col="lightgrey", main="H1: Ratio of  prone/averse populist features over time", sub="H1 variables: Deintermediation+Intimacy+Simplicity", xlab="Years", ylab="Ratio", cex.main=1.5) 
points(avplotyear, pch=19, col=myColors)
lines(avplotyear, col="black",lty=3)
lines(sdplotyear[,1],avplotyear[,2]+sdplotyear[,2],lty=2, col="black")
lines(sdplotyear[,1],avplotyear[,2]-sdplotyear[,2],lty=2, col="black")

plot(z~as.numeric(ratiosCE$Year),data=ratiosCE, ylim=c(0.5,8.8),col="lightgrey", main="H2: Ratio of  prone/averse populist features over time", sub="H2 variables: Acrimonious emotions+Authority", xlab="Years", ylab="Ratio", cex.main=1.5)
points(avplotyear2, pch=19, col=myColors)
lines(avplotyear2, col="black",lty=3)
lines(sdplotyear2[,1],avplotyear2[,2]+sdplotyear2[,2],lty=2, col="black")
lines(sdplotyear2[,1],avplotyear2[,2]-sdplotyear2[,2],lty=2, col="black")

Table

#Preparing Table 1

tabletitle<-c("Assent","Insight","Institutional processes","Political parties", "We", "Cognitive processes", "Conceptual notions", "Long words", "Democratic principles","Electoral processes", "Future focus", "I and you", "Motion", "Personalized governance", "Personalized rewards", "Rhetorical questions", "Body", "Family", "Food and farming", "Friends", "Gendered references", "Health", "Home", "Leisure", "Money", "Physical feel", "Pronouns", "Religion", "Third-person", "Cultural nationalism", "Elites", "Festival", "Non-elites", "Numbers", "Past focus", "Short sentences", "Time", "Tentative", "Positive emotions", "Achieve", "Certainty", "Power", "Anger", "Anxiety","Community references", "Conflict", "Negative emotions", "Risk", "Sadness", "Swear words", "The rest")

#Table1a (title: Proportions, variance and effect sizes of dictionary categories among PMs)

pretable4f<-pretable4
colnames(pretable4f)[1]<-"Assent"
colnames(pretable4f)[2]<-"Insight"
colnames(pretable4f)[3]<-"Institutional processes"
colnames(pretable4f)[4]<-"Political parties"
colnames(pretable4f)[5]<-"We"
colnames(pretable4f)[6]<-"Cognitive processes"
colnames(pretable4f)[7]<-"Conceptual notions"
colnames(pretable4f)[8]<-"Long words"
colnames(pretable4f)[9]<-"Democratic principles"
colnames(pretable4f)[10]<-"Electoral processes"
colnames(pretable4f)[11]<-"Future focus"
colnames(pretable4f)[12]<-"I and you"
colnames(pretable4f)[13]<-"Motion"
colnames(pretable4f)[14]<-"Personalized governance"
colnames(pretable4f)[15]<-"Personalized rewards"
colnames(pretable4f)[16]<-"Rhetorical questions"
colnames(pretable4f)[17]<-"Body"
colnames(pretable4f)[18]<-"Family"
colnames(pretable4f)[19]<-"Food and farming"
colnames(pretable4f)[20]<-"Friends"
colnames(pretable4f)[21]<-"Gendered references"
colnames(pretable4f)[22]<-"Health"
colnames(pretable4f)[23]<-"Home"
colnames(pretable4f)[25]<-"Leisure"
colnames(pretable4f)[24]<-"Money"
colnames(pretable4f)[26]<-"Physical feel"
colnames(pretable4f)[27]<-"Pronouns"
colnames(pretable4f)[28]<-"Religion"
colnames(pretable4f)[29]<-"Third-person"
colnames(pretable4f)[30]<-"Cultural nationalism"
colnames(pretable4f)[31]<-"Elites"
colnames(pretable4f)[32]<-"Festival"
colnames(pretable4f)[33]<-"Non-elites"
colnames(pretable4f)[34]<-"Numbers"
colnames(pretable4f)[35]<-"Past focus"
colnames(pretable4f)[36]<-"Short sentences"
colnames(pretable4f)[37]<-"Time"
colnames(pretable4f)[38]<-"Tentative"
colnames(pretable4f)[39]<-"Positive emotions"
colnames(pretable4f)[40]<-"Achieve"
colnames(pretable4f)[41]<-"Certainty"
colnames(pretable4f)[42]<-"Power"
colnames(pretable4f)[43]<-"Anger"
colnames(pretable4f)[44]<-"Anxiety"
colnames(pretable4f)[45]<-"Community references"
colnames(pretable4f)[46]<-"Conflict"
colnames(pretable4f)[47]<-"Negative emotions"
colnames(pretable4f)[48]<-"Risk"
colnames(pretable4f)[49]<-"Sadness"
colnames(pretable4f)[50]<-"Swear words"
colnames(pretable4f)[51]<-"The rest"

rownames(pretable4f)[1]<-"C.Shekhar"
rownames(pretable4f)[2]<-"C.Singh"
rownames(pretable4f)[3]<-"M.Desai"
rownames(pretable4f)[4]<-"I.Gandhi"
rownames(pretable4f)[5]<-"M.Singh"
rownames(pretable4f)[6]<-"N.Modi"
rownames(pretable4f)[7]<-"J.Nehru"
rownames(pretable4f)[8]<-"R.Gandhi"
rownames(pretable4f)[9]<-"PVN.Rao"
rownames(pretable4f)[10]<-"AB.Vajpayee"
rownames(pretable4f)[11]<-"VP.Singh"

pretable4df<-as.data.frame(pretable4f)
PmOrderF<-c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi","F*","n^2")
w<-setDT(pretable4df, keep.rownames = TRUE)[]
rn<-as.matrix(w$rn)
pretable4df<-w[match(PmOrderF, rn),]
colnames(pretable4df)[1]<-"Prime Ministers"

pretable4dfo<-cbind(pretable4df$Assent,pretable4df$Insight)

Table2a<-pretable4df[,c(1,37,35,32,34,36,38,31,33,9,7,8,10,13,15,16,12,11,17,14,5,4,2,3,21,19,24,25,29,23,26,18,27,20,22,30,28,6,48,44,45,50,51,47,46,49,40,41,42,43,39,52)]

kable(Table2a,"latex",booktabs = T, align="c") %>%
  kable_styling(latex_options = c("basic","scale_down")) %>%
  row_spec(0, align= "c", hline_after= T, bold=T) %>%
  add_header_above(c(" " = 1, "Prone" = 8, "Averse" = 4, "Prone" = 7, "Averse" = 4, "Prone" = 13, "Averse" = 1, "Prone" = 8, "Averse" = 1, "Prone" = 3, "Averse" = 1, " " = 1),italic=T) %>%
  add_header_above(c(" ", "Simplicity" = 12, "Deintermediation" = 11, "Intimacy" = 14, "Acrimony" = 9, "Authority" = 4,  " " = 1),italic=T) %>%
  add_header_above(c(" ", "Hypothesis 1" = 37, "Hypothesis 2" = 13, " " = 1),italic=T) %>%
  row_spec(12:13, bold = F, italic= T, color = "black") %>%
add_footnote(c("Results indicate the proportions of dictionary categories for each Prime Minister. The sum of all the categories and the rest of features equals 1 for each Prime Minister.", 
               "Linguistic measures are grouped according to their direct or inverse relashionship to populist styling (prone/averse), according to the variables of interest (Simplicity/Deintermediation/Intimacy/Acrimony/Authority) and accroding to the hypotheses (H1,H2) they are part of.", 
               "For 49 out of 50 categories, proportions are significantly different from one another at p$<$.001 using Bonferroni post hoc comparison tests.", 
               "N^2 are conservative estimates of effect sizes for the overall differences among Prime Ministers for each category."), notation = "number") %>%
landscape()
#Table1b (title: Proportions, variance and effect sizes of Hypotheses 1 & 2 among PMs)
  
pretable1f<-pretable1

colnames(pretable1f)[1]<-"Hypothesis 1"
colnames(pretable1f)[2]<-"Hypothesis 2"
colnames(pretable1f)[3]<-"The rest"

rownames(pretable1f)[1]<-"C.Shekhar"
rownames(pretable1f)[2]<-"C.Singh"
rownames(pretable1f)[3]<-"M.Desai"
rownames(pretable1f)[4]<-"I.Gandhi"
rownames(pretable1f)[5]<-"M.Singh"
rownames(pretable1f)[6]<-"N.Modi"
rownames(pretable1f)[7]<-"J.Nehru"
rownames(pretable1f)[8]<-"R.Gandhi"
rownames(pretable1f)[9]<-"PVN.Rao"
rownames(pretable1f)[10]<-"AB.Vajpayee"
rownames(pretable1f)[11]<-"VP.Singh"

pretable1df<-as.data.frame(pretable1f)
PmOrderF<-c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi","F*","n^2")
w<-setDT(pretable1df, keep.rownames = TRUE)[]
rn<-as.matrix(w$rn)
pretable1df<-w[match(PmOrderF, rn),]
colnames(pretable1df)[1]<-"Prime Ministers"

Table2b<-pretable1df[,c(1,2,3,4)]

kable(Table2b,"latex",booktabs = T, align="c") %>%
  kable_styling(latex_options = c("basic")) %>%
  row_spec(0, align= "c", hline_after= T, bold=T) %>%
  row_spec(12:13, bold = F, italic= T, color = "black")
#Table1c (title: Proportions, variance and effect sizes of prone and averse linguistic measures among PMs)

pretable2f<-pretable2

rownames(pretable2f)[1]<-"C.Shekhar"
rownames(pretable2f)[2]<-"C.Singh"
rownames(pretable2f)[3]<-"M.Desai"
rownames(pretable2f)[4]<-"I.Gandhi"
rownames(pretable2f)[5]<-"M.Singh"
rownames(pretable2f)[6]<-"N.Modi"
rownames(pretable2f)[7]<-"J.Nehru"
rownames(pretable2f)[8]<-"R.Gandhi"
rownames(pretable2f)[9]<-"PVN.Rao"
rownames(pretable2f)[10]<-"AB.Vajpayee"
rownames(pretable2f)[11]<-"VP.Singh"

pretable2df<-as.data.frame(pretable2f)
PmOrderF<-c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi","F*","n^2")
w<-setDT(pretable2df, keep.rownames = TRUE)[]
rn<-as.matrix(w$rn)
pretable2df<-w[match(PmOrderF, rn),]
colnames(pretable2df)[1]<-"Prime Ministers"

colnames(pretable2df)[2]<-"Averse"
colnames(pretable2df)[3]<-"Prone"
colnames(pretable2df)[4]<-"Averse"
colnames(pretable2df)[5]<-"Prone"
colnames(pretable2df)[6]<-"The rest"

Table2c<-pretable2df[,c(1,3,2,5,4,6)]

kable(Table2c,"latex",booktabs = T, align="c") %>%
  kable_styling(latex_options = c("basic")) %>%
  row_spec(0, align= "c", hline_after= T, bold=T) %>%
  add_header_above(c(" " = 1, "Hypothesis 1" = 2, "Hypothesis 2" = 2, " " = 1),italic=T) %>%
  row_spec(12:13, bold = F, italic= T, color = "black")
#Table1d (title: Proportions, variance and effect sizes of dictionary variables among PMs)

pretable3f<-pretable3

rownames(pretable3f)[1]<-"C.Shekhar"
rownames(pretable3f)[2]<-"C.Singh"
rownames(pretable3f)[3]<-"M.Desai"
rownames(pretable3f)[4]<-"I.Gandhi"
rownames(pretable3f)[5]<-"M.Singh"
rownames(pretable3f)[6]<-"N.Modi"
rownames(pretable3f)[7]<-"J.Nehru"
rownames(pretable3f)[8]<-"R.Gandhi"
rownames(pretable3f)[9]<-"PVN.Rao"
rownames(pretable3f)[10]<-"AB.Vajpayee"
rownames(pretable3f)[11]<-"VP.Singh"

pretable3df<-as.data.frame(pretable3f)
PmOrderF<-c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi","F*","n^2")
w<-setDT(pretable3df, keep.rownames = TRUE)[]
rn<-as.matrix(w$rn)
pretable3df<-w[match(PmOrderF, rn),]
colnames(pretable3df)[1]<-"Prime Ministers"

colnames(pretable3df)[2]<-"Deintermediation"
colnames(pretable3df)[3]<-"Intimacy"
colnames(pretable3df)[4]<-"Simplicity"
colnames(pretable3df)[5]<-"Deintermediation"
colnames(pretable3df)[6]<-"Intimacy"
colnames(pretable3df)[7]<-"Simplicity"

colnames(pretable3df)[8]<-"Authority"
colnames(pretable3df)[9]<-"Acrimony"

colnames(pretable3df)[10]<-"Authority"
colnames(pretable3df)[11]<-"Acrimony"

colnames(pretable3df)[12]<-"The rest"

Table2d<-pretable3df[,c(1,5,6,7,2,3,4,10,11,8,9,12)]

kable(Table2d,"latex",booktabs = T, align="c") %>%
  kable_styling(latex_options = c("basic","scale_down")) %>%
  row_spec(0, align= "c", hline_after= T, bold=T) %>%
  add_header_above(c(" " = 1, "Prone" = 3, "Averse" = 3, "Prone" = 2, "Averse" = 2, " " = 1),italic=T) %>%
  add_header_above(c(" " = 1, "Hypothesis 1" = 6, "Hypothesis 2" = 4, " " = 1),italic=T) %>%
  row_spec(12:13, bold = F, italic= T, color = "black") %>%
landscape()
#Table1e (title: Proportions, variance and effect sizes of dictionary types among PMs)

pretable5f<-pretable5

rownames(pretable5f)[1]<-"C.Shekhar"
rownames(pretable5f)[2]<-"C.Singh"
rownames(pretable5f)[3]<-"M.Desai"
rownames(pretable5f)[4]<-"I.Gandhi"
rownames(pretable5f)[5]<-"M.Singh"
rownames(pretable5f)[6]<-"N.Modi"
rownames(pretable5f)[7]<-"J.Nehru"
rownames(pretable5f)[8]<-"R.Gandhi"
rownames(pretable5f)[9]<-"PVN.Rao"
rownames(pretable5f)[10]<-"AB.Vajpayee"
rownames(pretable5f)[11]<-"VP.Singh"

pretable5df<-as.data.frame(pretable5f)
PmOrderF<-c("J.Nehru","I.Gandhi","M.Desai","C.Singh","R.Gandhi","VP.Singh","C.Shekhar","PVN.Rao","AB.Vajpayee","M.Singh","N.Modi","F*","n^2")
w<-setDT(pretable5df, keep.rownames = TRUE)[]
rn<-as.matrix(w$rn)
pretable5df<-w[match(PmOrderF, rn),]
colnames(pretable5df)[1]<-"Prime Ministers"

colnames(pretable5df)[2]<-"Extension"
colnames(pretable5df)[3]<-"Seeds"
colnames(pretable5df)[4]<-"Ad hoc"
colnames(pretable5df)[5]<-"Seeds gen."
colnames(pretable5df)[6]<-"The rest"

Table2e<-pretable5df[,c(1,3,5,2,4,6)]

kable(Table2e,"latex",booktabs = T, align="c") %>%
  kable_styling(latex_options = c("basic")) %>%
  row_spec(0, align= "c", hline_after= T, bold=T) %>%
  row_spec(12:13, bold = F, italic= T, color = "black")

Appendices

#Appendix 1 (title: Summary table of the populist categories)

header <- c("Category","Abbreviation","Examples","Populist Correlates","Variable","Rel","H","Seed","Ext")
a1  <- c("Short sentences","shortsentences",".","Plainness, directness","Simplicity","Prone",1,1,0)
a2  <- c("Numbers","numbers","lakh*, crore*","Directness, truth-speaking","Simplicity","Prone",1,36,75)
a3  <- c("Elites","elites","castei*, ruling_class","Agonistic, manichaean","Simplicity","Prone",1,0,145)
a4  <- c("Non-elites","nonelite","ordinary, common_man","Agonistic, manichaean","Simplicity","Prone",1,0,78)
a5  <- c("Past focus","pastfocus","caught, brought","Negative, critique, informal","Simplicity","Prone",1,342,0)
a6  <- c("Time","time","ago, current","Storytelling, closeness","Simplicity","Prone",1,0,305)
a7  <- c("Cultural nationalism","culturalnationalism","Ganga, Ram, temple", "Relatedness, closeness","Simplicity","Prone",1,0,109)
a8  <- c("Festival","festival","Diwali, Lohri","Familiar, popular","Simplicity","Prone",1,0,100)
a9  <- c("Long words","longwords","synonymous, reciprocate","Complexity, precision","Simplicity","Averse",1,10680,0)
a10 <- c("Cognitive processes","cognitivepro","analy*, question","Analytical, complexity","Simplicity","Averse",1,800,116)
a11 <- c("Conceptual notions","conceptualnotion","*ism, *logy, *tion","Notional, complexity","Simplicity","Averse",1,0,415)
a12 <- c("Democratic principles","principles","inclusive*, secularism","Abstraction, ideational","Simplicity","Averse",1,0,60)
a13 <- c("I and you","iyou","I, my, you, your","Social, informal, honest","Deintermediation","Prone",1,67,0)
a14 <- c("Personalized governance","personalgov","scheme, provision","Individualized decision-making","Deintermediation","Prone",1,0,50)
a15 <- c("Personalized rewards","persreward","dare, bold","Boldness, success","Deintermediation","Prone",1,120,5)
a16 <- c("Future focus","futurefocus","till, soon, will","Self-driven, goal-oriented","Deintermediation","Prone",1,98,0)
a17 <- c("Electoral processes","electoralpro","majority, vote*, defeat","Permanent campaigning","Deintermediation","Prone",1,0,33)
a18 <- c("Rhetorical questions","rhetoricalq","?","Direct appeal, hailing, true/false","Deintermediation","Prone",1,0,1)
a19 <- c("Motion","motion","arrive, travel, go","Narrative, action-based","Deintermediation","Prone",1,325,29)
a20 <- c("Political parties","politicalparties","Bharatiya_Janata_Party","Political brokerage","Deintermediation","Averse",1,0,241)
a21 <- c("Institutional procesess","institutionalpro","adopt*, draft, Committee","Institutional brokerage","Deintermediation","Averse",1,0,217)
a22 <- c("Assent","assent","alright, yes","Agreement, compliance, mediation","Deintermediation","Averse",1,34,6)
a23 <- c("Insight","insight","realize, question, infer","Thought process, dialogue","Deintermediation","Averse",1,259,13)
a24 <- c("Friends","friends","fellow, comrad*","Closeness, casual, warmness","Intimacy","Prone",1,95,5)
a25 <- c("Family","family","mother, cousin, auntie","Closeness, kinship","Intimacy","Prone",1,129,82)
a26 <- c("Home","home","bed, kitchen, cylinder","Closeness, everyday, simplicity","Intimacy","Prone",1,98,38)
a27 <- c("Leisure","leisure","sport*, kite, film*","Closeness, everyday, commonness","Intimacy","Prone",1,64,43)
a28 <- c("Religion","religion","god, faith, guru","Closeness, belonging, commonness","Intimacy","Prone",1,168,246)
a29 <- c("Health","health","ill, diet, defecat*","Closeness, commonness, personal","Intimacy","Prone",1,286,51)
a30 <- c("Money","money","shop, pay*, job","Commonness, personal, concrete","Intimacy","Prone",1,215,79)
a31 <- c("Body","body","skin, tongue, sweat","Personal, sensory","Intimacy","Prone",1,215,5)
a32 <- c("Physical feel","phyfeel","cold, dry, warm","Personal, sensory","Intimacy","Prone",1,128,6)
a33 <- c("Food and farming","foodfarm","milk, rice, honey","Commonness, belonging","Intimacy","Prone",1,183,81)
a34 <- c("Gendered references","gendered","madam, boy, papa","Socially connected, commonness","Intimacy","Prone",1,237,21)
a35 <- c("Third-person","thirdsp","he, her, they","Socially connected, out-group","Intimacy","Prone",1,35,0)
a36 <- c("Pronouns","pronouns","somebod*, others, mine","Informal, personal","Intimacy","Prone",1,190,0)
a37 <- c("We","we","we, us, our","Detached, high status","Intimacy","Averse",1,16,0)
a38 <- c("Negative emotions","negativeemo","abuse*, dread*, furious*","Agonistic, affective","Acrimony","Prone",2,734,252)
a39 <- c("Anger","anger","assault*, lies, rape*","Agonistic, affective","Acrimony","Prone",2,230,121)
a40 <- c("Anxiety","anxiety","fear, panic*, threat*","Agonistic, affective","Acrimony","Prone",2,121,146)
a41 <- c("Sadness","sadness","fail*, gloom*, tragic","Agonistic, affective","Acrimony","Prone",2,136,16)
a42 <- c("Swear words","swearwords","idiot*, creep, goon*","Agonistic, affective","Acrimony","Prone",2,128,9)
a43 <- c("Conflict","conflict","against, exclude, blame","Agonistic, affective","Acrimony","Prone",2,36,129)
a44 <- c("Community references","community","adivasi*, caste, Muslim*","Agonistic, affective","Acrimony","Prone",2,152,0)
a45 <- c("Risk","risk","crisis, troubl*, wrong","Affective, uncertainty","Acrimony","Prone",2,102,15)
a46 <- c("Positive emotions","positiveemo","perfect, inspir*, impress*","Affective, non-conflictual","Acrimony","Averse",2,455,16)
a47 <- c("Achieve","achieve","eradicate, forge, deliver","Performance, charisma", "Authority","Prone",2,213,94)
a48 <- c("Certainty","certainty","blatant*, boldness, clear","Resolve, charisma","Authority","Prone",2,113,34)
a49 <- c("Power","power","up, strong, army","Decisiveness, charisma","Authority","Prone",2,517,45)
a50 <- c("Tentative","tentative","depends, guess, or","Indecisiveness, compromise","Authority","Averse",2,177,11)
Appendix1<- rbind(header, a1,   a2, a3, a4, a5, a6, a7, a8, a9, a10,    a11,    a12,    a13,    a14,    a15,    a16,    a17,    a18,    a19,    a20,    a21,    a22,    a23,    a24,    a25,    a26,    a27,    a28,    a29,    a30,    a31,    a32,    a33,    a34,    a35,    a36,    a37,    a38,    a39,    a40,    a41,    a42,    a43,    a44,    a45,    a46,    a47,    a48,    a49,    a50)

colnames(Appendix1) <- Appendix1[1, ]
Appendix1 <- Appendix1[-1, ]
rownames(Appendix1) <- NULL

Appendix1 <- as.data.frame(Appendix1)

names(Appendix1)[6] <- paste0(names(Appendix1)[6],footnote_marker_number(1))
names(Appendix1)[7] <- paste0(names(Appendix1)[7],footnote_marker_number(2))
names(Appendix1)[8] <- paste0(names(Appendix1)[8],footnote_marker_number(3))
names(Appendix1)[9] <- paste0(names(Appendix1)[9],footnote_marker_number(4))

kable(Appendix1,"latex",booktabs = T, align="l", escape = F) %>%
  kable_styling(latex_options = c("basic","scale_down")) %>%
  row_spec(0, align= "l", hline_after= T, bold=T) %>%
  footnote(number = c("Relationship to populist style", "Hypotheses","Seeds/list of features","Extension/Ad hoc features"))
#Prepararing Appendix 2
colnames(v1)[3]<-"therest"
s <- colMeans(v1)
ss <- sum(s)
h1h2<-s/ss
#h1h2
#sum(h1h2)

colnames(v4)[5]<-"therest"
s <- colMeans(v4)
ss <- sum(s)
proneaverse<-s/ss
#proneaverse
#sum(proneaverse)

colnames(v7)[11]<-"therest"
s <- colMeans(v7)
ss <- sum(s)
variables<-s/ss
#variables
#sum(variables)

colnames(v10)[51]<-"therest"
s <- colMeans(v10)
ss <- sum(s)
categories<-s/ss
#categories
#sum(categories)

colnames(v13)[5]<-"therest"
s <- colMeans(v13)
ss <- sum(s)
seeds<-s/ss
#seeds
#sum(seeds)

h1h2t<-setDT(as.list(h1h2), keep.rownames = TRUE)[]
h1h2df<-as.data.frame(h1h2t)
rownames(h1h2df)<-"Hypotheses"

proneaverset<-setDT(as.list(proneaverse), keep.rownames = TRUE)[]
proneaversedf<-as.data.frame(proneaverset)
rownames(proneaversedf)<-"Pop. prone & averse"

variablest<-setDT(as.list(variables), keep.rownames = TRUE)[]
variablesdf<-as.data.frame(variablest)
rownames(variablesdf)<-"Pop. variables"

categoriest<-setDT(as.list(categories), keep.rownames = TRUE)[]
categoriesdf<-as.data.frame(categoriest)
rownames(categoriesdf)<-"Pop. categories"

seedst<-setDT(as.list(seeds), keep.rownames = TRUE)[]
seedsdf<-as.data.frame(seedst)
rownames(seedsdf)<-"Seeds/extension"

#Appendix 2a (title: Summary statistics of Hypotheses 1 & 2)

v1f<-v1
colnames(v1f)[1]<-"Hypothesis 1"
colnames(v1f)[2]<-"Hypothesis 2"
colnames(v1f)[3]<-"The rest"

#Appendix 2b (title: Summary statistics of features’ relationship to populist styling)

v4f<-v4
colnames(v4f)[1]<-"Pop. prone (H1)"
colnames(v4f)[2]<-"Pop. prone (H2)"
colnames(v4f)[3]<-"Pop. averse (H1)"
colnames(v4f)[4]<-"Pop. averse (H2)"
colnames(v4f)[5]<-"The rest"

#Appendix 2c (title: Summary statistics of dictionary variables)

v7f<-v7
colnames(v7f)[1]<-"Deintermediation (H1,a.)"
colnames(v7f)[2]<-"Intimacy (H1,a.)"
colnames(v7f)[3]<-"Simplicity (H1,a.)"
colnames(v7f)[4]<-"Deintermediation (H1,p.)"
colnames(v7f)[5]<-"Intimacy (H1,p.)"
colnames(v7f)[6]<-"Simplicity (H1,p.)"

colnames(v7f)[7]<-"Authority (H2,a.)"
colnames(v7f)[8]<-"Acrimony (H2,a.)"
colnames(v7f)[9]<-"Authority (H2,p.)"
colnames(v7f)[10]<-"Acrimony (H2,p.)"

colnames(v7f)[11]<-"The rest"

#Appendix 2d (title: Summary statistics of dictionary categories)

v10f<-v10
colnames(v10f)[1]<-"Assent"
colnames(v10f)[2]<-"Insight"
colnames(v10f)[3]<-"Institutional processes"
colnames(v10f)[4]<-"Political parties"
colnames(v10f)[5]<-"We"
colnames(v10f)[6]<-"Cognitive processes"
colnames(v10f)[7]<-"Conceptual notions"
colnames(v10f)[8]<-"Long words"
colnames(v10f)[9]<-"Democratic principles"
colnames(v10f)[10]<-"Electoral processes"
colnames(v10f)[11]<-"Future focus"
colnames(v10f)[12]<-"I and you"
colnames(v10f)[13]<-"Motion"
colnames(v10f)[14]<-"Personalized governance"
colnames(v10f)[15]<-"Personalized rewards"
colnames(v10f)[16]<-"Rhetorical questions"
colnames(v10f)[17]<-"Body"
colnames(v10f)[18]<-"Family"
colnames(v10f)[19]<-"Food and farming"
colnames(v10f)[20]<-"Friends"
colnames(v10f)[21]<-"Gendered references"
colnames(v10f)[22]<-"Health"
colnames(v10f)[23]<-"Home"
colnames(v10f)[25]<-"Leisure"
colnames(v10f)[24]<-"Money"
colnames(v10f)[26]<-"Physical feel"
colnames(v10f)[27]<-"Pronouns"
colnames(v10f)[28]<-"Religion"
colnames(v10f)[29]<-"Third-person"
colnames(v10f)[30]<-"Cultural nationalism"
colnames(v10f)[31]<-"Elites"
colnames(v10f)[32]<-"Festival"
colnames(v10f)[33]<-"Non-elites"
colnames(v10f)[34]<-"Numbers"
colnames(v10f)[35]<-"Past focus"
colnames(v10f)[36]<-"Short sentences"
colnames(v10f)[37]<-"Time"
colnames(v10f)[38]<-"Tentative"
colnames(v10f)[39]<-"Positive emotions"
colnames(v10f)[40]<-"Achieve"
colnames(v10f)[41]<-"Certainty"
colnames(v10f)[42]<-"Power"
colnames(v10f)[43]<-"Anger"
colnames(v10f)[44]<-"Anxiety"
colnames(v10f)[45]<-"Community references"
colnames(v10f)[46]<-"Conflict"
colnames(v10f)[47]<-"Negative emotions"
colnames(v10f)[48]<-"Risk"
colnames(v10f)[49]<-"Sadness"
colnames(v10f)[50]<-"Swear words"
colnames(v10f)[51]<-"The rest"

#Appendix 2e (title: Summary statistics of dictionary types)

v13f<-v13
colnames(v13f)[1]<-"Extension"
colnames(v13f)[2]<-"Seeds"
colnames(v13f)[3]<-"Ad hoc"
colnames(v13f)[4]<-"Seeds gen."
colnames(v13f)[5]<-"The rest"

#Generating Appendix 2

Table1a<-stargazer(as.data.frame(v1f), type="latex")
## 
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Sat, May 02, 2020 - 18:53:42
## \begin{table}[!htbp] \centering 
##   \caption{} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}}lccccccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
## Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Pctl(25)} & \multicolumn{1}{c}{Pctl(75)} & \multicolumn{1}{c}{Max} \\ 
## \hline \\[-1.8ex] 
## Hypothesis 1 & 4,199 & 2,448.623 & 1,991.624 & 52 & 1,147.5 & 3,115.5 & 24,993 \\ 
## Hypothesis 2 & 4,199 & 697.675 & 558.376 & 6 & 334 & 891 & 6,782 \\ 
## The rest & 4,199 & 947.060 & 710.134 & 13 & 461 & 1,223 & 10,423 \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
Table1b<-stargazer(as.data.frame(v4f), type="latex")
## 
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Sat, May 02, 2020 - 18:53:42
## \begin{table}[!htbp] \centering 
##   \caption{} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}}lccccccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
## Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Pctl(25)} & \multicolumn{1}{c}{Pctl(75)} & \multicolumn{1}{c}{Max} \\ 
## \hline \\[-1.8ex] 
## Pop. prone (H1) & 4,199 & 1,050.940 & 826.194 & 12 & 501 & 1,336 & 12,703 \\ 
## Pop. prone (H2) & 4,199 & 1,397.683 & 1,235.847 & 40 & 615.5 & 1,731 & 12,290 \\ 
## Pop. averse (H1) & 4,199 & 163.895 & 128.722 & 2 & 82 & 206 & 1,476 \\ 
## Pop. averse (H2) & 4,199 & 533.780 & 436.675 & 4 & 248 & 688 & 5,306 \\ 
## The rest & 4,199 & 947.060 & 710.134 & 13 & 461 & 1,223 & 10,423 \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
Table1c<-stargazer(as.data.frame(v7f), type="latex")
## 
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Sat, May 02, 2020 - 18:53:42
## \begin{table}[!htbp] \centering 
##   \caption{} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}}lccccccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
## Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Pctl(25)} & \multicolumn{1}{c}{Pctl(75)} & \multicolumn{1}{c}{Max} \\ 
## \hline \\[-1.8ex] 
## Deintermediation (H1,a.) & 4,199 & 176.964 & 156.615 & 0 & 78 & 226 & 2,619 \\ 
## Intimacy (H1,a.) & 4,199 & 97.707 & 90.619 & 0 & 40 & 124 & 1,014 \\ 
## Simplicity (H1,a.) & 4,199 & 776.270 & 601.541 & 12 & 372 & 995 & 9,070 \\ 
## Deintermediation (H1,p.) & 4,199 & 243.522 & 222.100 & 2 & 102 & 305 & 2,741 \\ 
## Intimacy (H1,p.) & 4,199 & 689.321 & 610.305 & 14 & 304 & 850 & 6,346 \\ 
## Simplicity (H1,p.) & 4,199 & 464.840 & 421.663 & 10 & 197 & 577.5 & 4,631 \\ 
## Authority (H2,a.) & 4,199 & 63.037 & 77.741 & 0 & 18 & 78 & 928 \\ 
## Acrimony (H2,a.) & 4,199 & 100.858 & 65.464 & 2 & 56 & 129 & 548 \\ 
## Authority (H2,p.) & 4,199 & 306.640 & 227.246 & 4 & 150 & 400 & 3,036 \\ 
## Acrimony (H2,p.) & 4,199 & 227.140 & 232.163 & 0 & 78 & 294 & 2,720 \\ 
## The rest & 4,199 & 947.060 & 710.134 & 13 & 461 & 1,223 & 10,423 \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
Table1d<-stargazer(as.data.frame(v10f), type="latex")
## 
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Sat, May 02, 2020 - 18:53:42
## \begin{table}[!htbp] \centering 
##   \caption{} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}}lccccccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
## Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Pctl(25)} & \multicolumn{1}{c}{Pctl(75)} & \multicolumn{1}{c}{Max} \\ 
## \hline \\[-1.8ex] 
## Assent & 4,199 & 3.491 & 4.806 & 0 & 0 & 4 & 60 \\ 
## Insight & 4,199 & 83.250 & 77.437 & 0 & 34 & 107 & 1,204 \\ 
## Institutional processes & 4,199 & 88.401 & 84.727 & 0 & 35 & 113 & 1,374 \\ 
## Political parties & 4,199 & 1.822 & 6.140 & 0 & 0 & 1 & 102 \\ 
## We & 4,199 & 97.707 & 90.619 & 0 & 40 & 124 & 1,014 \\ 
## Cognitive processes & 4,199 & 392.755 & 366.333 & 2 & 158 & 500 & 4,896 \\ 
## Conceptual notions & 4,199 & 123.648 & 90.965 & 2 & 59 & 165 & 1,404 \\ 
## Long words & 4,199 & 239.661 & 171.019 & 6 & 120 & 320 & 2,586 \\ 
## Democratic principles & 4,199 & 20.204 & 26.197 & 0 & 4 & 27 & 342 \\ 
## Electoral processes & 4,199 & 5.593 & 12.483 & 0 & 0 & 6 & 192 \\ 
## Future focus & 4,199 & 50.789 & 49.976 & 0 & 18 & 66 & 706 \\ 
## I and you & 4,199 & 72.540 & 81.791 & 0 & 24 & 88 & 988 \\ 
## Motion & 4,199 & 70.956 & 61.284 & 0 & 28 & 94 & 654 \\ 
## Personalized governance & 4,199 & 13.634 & 21.307 & 0 & 2 & 16 & 242 \\ 
## Personalized rewards & 4,199 & 26.392 & 21.084 & 0 & 12 & 34 & 256 \\ 
## Rhetorical questions & 4,199 & 3.619 & 14.109 & 0 & 0 & 3 & 731 \\ 
## Body & 4,199 & 9.423 & 10.606 & 0 & 2 & 12 & 116 \\ 
## Family & 4,199 & 13.347 & 29.498 & 0 & 2 & 12 & 444 \\ 
## Food and farming & 4,199 & 16.516 & 32.190 & 0 & 2 & 16 & 462 \\ 
## Friends & 4,199 & 9.114 & 12.803 & 0 & 2 & 12 & 224 \\ 
## Gendered references & 4,199 & 29.894 & 43.606 & 0 & 4 & 38 & 476 \\ 
## Health & 4,199 & 24.367 & 30.267 & 0 & 8 & 28 & 416 \\ 
## Home & 4,199 & 14.605 & 24.363 & 0 & 2 & 16 & 404 \\ 
## Money & 4,199 & 17.960 & 24.281 & 0 & 4 & 22 & 260 \\ 
## Leisure & 4,199 & 57.909 & 70.934 & 0 & 14 & 74 & 786 \\ 
## Physical feel & 4,199 & 8.721 & 10.024 & 0 & 2 & 12 & 114 \\ 
## Pronouns & 4,199 & 417.514 & 380.249 & 0 & 182 & 521 & 4,694 \\ 
## Religion & 4,199 & 22.296 & 33.040 & 0 & 4 & 26 & 408 \\ 
## Third-person & 4,199 & 47.656 & 53.891 & 0 & 14 & 62 & 676 \\ 
## Cultural nationalism & 4,199 & 25.818 & 39.019 & 0 & 6 & 28 & 586 \\ 
## Elites & 4,199 & 7.833 & 11.260 & 0 & 2 & 10 & 150 \\ 
## Festival & 4,199 & 1.511 & 6.210 & 0 & 0 & 0 & 144 \\ 
## Non-elites & 4,199 & 46.389 & 61.441 & 0 & 12 & 53 & 800 \\ 
## Numbers & 4,199 & 45.056 & 48.070 & 0 & 15 & 58 & 616 \\ 
## Past focus & 4,199 & 99.229 & 107.541 & 0 & 34 & 124 & 1,370 \\ 
## Short sentences & 4,199 & 93.660 & 76.310 & 1 & 44 & 118 & 933 \\ 
## Time & 4,199 & 145.344 & 123.689 & 0 & 64 & 186 & 1,222 \\ 
## Tentative & 4,199 & 63.037 & 77.741 & 0 & 18 & 78 & 928 \\ 
## Positive emotions & 4,199 & 100.858 & 65.464 & 2 & 56 & 129 & 548 \\ 
## Achieve & 4,199 & 104.441 & 75.122 & 0 & 50 & 142 & 1,118 \\ 
## Certainty & 4,199 & 61.935 & 52.180 & 0 & 28 & 80 & 788 \\ 
## Power & 4,199 & 140.264 & 115.435 & 2 & 64 & 180 & 1,144 \\ 
## Anger & 4,199 & 17.771 & 24.348 & 0 & 4 & 22 & 276 \\ 
## Anxiety & 4,199 & 22.997 & 24.369 & 0 & 6 & 30 & 220 \\ 
## Community references & 4,199 & 17.544 & 23.401 & 0 & 4 & 22 & 256 \\ 
## Conflict & 4,199 & 75.831 & 86.083 & 0 & 22 & 98 & 1,178 \\ 
## Negative emotions & 4,199 & 61.941 & 66.884 & 0 & 18 & 80 & 710 \\ 
## Risk & 4,199 & 22.957 & 25.576 & 0 & 6 & 30 & 326 \\ 
## Sadness & 4,199 & 7.975 & 9.185 & 0 & 2 & 12 & 86 \\ 
## Swear words & 4,199 & 0.123 & 0.608 & 0 & 0 & 0 & 16 \\ 
## The rest & 4,199 & 947.060 & 710.134 & 13 & 461 & 1,223 & 10,423 \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
Table1e<-stargazer(as.data.frame(v13f), type="latex")
## 
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Sat, May 02, 2020 - 18:53:43
## \begin{table}[!htbp] \centering 
##   \caption{} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}}lccccccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
## Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Pctl(25)} & \multicolumn{1}{c}{Pctl(75)} & \multicolumn{1}{c}{Max} \\ 
## \hline \\[-1.8ex] 
## Extension & 4,199 & 215.261 & 182.162 & 0 & 94 & 272 & 1,834 \\ 
## Seeds & 4,199 & 2,196.643 & 1,854.684 & 28 & 1,006 & 2,809 & 22,650 \\ 
## Ad hoc & 4,199 & 494.732 & 396.057 & 12 & 228 & 628 & 5,007 \\ 
## Seeds gen. & 4,199 & 239.661 & 171.019 & 6 & 120 & 320 & 2,586 \\ 
## The rest & 4,199 & 947.060 & 710.134 & 13 & 461 & 1,223 & 10,423 \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
#Appendix 3 (title: Effect of time on populist categories and populist ratios for hypotheses 1 and 2)

stargazer( lm.h1a,lm.h2a,lm.h1c,lm.h2c,
           type = "latex", style = "ajps", 
           column.labels= c("Full model H1", "Full model H2", "Ratio model H1", "Ratio model H2"), 
           dep.var.labels.include = FALSE,
           intercept.bottom = FALSE, 
           notes = c( "Standard errors are in parentheses. The full and ratio models (H1 and H2) are based on yearly time series."), 
           notes.append = TRUE,
           model.numbers = FALSE,
           star.cutoffs = c( .1,.05,.01,.001 ),
           digits = 2,
           covariate.labels = c("Intercept","Long words","Cognitive processes","Conceptual notions","Principles","Institutional processes","Political parties","We","Assent","Insight","Third-person","Family","Religion","Gendered","Leisure","Body","Health","Friends","Home","Pronouns","Physical feel","Food farm","Money","Festival","Elites","Non-elites","Short sentences","Numbers","Past focus","Cultural nationalism","Time","I and you", "Electoral processes","Personal governance","Rhetorical questions","Future focus","Personal reward","Motion","Positive emotions","Tentative","Negative emotions","Anger","Anxiety","Sadness","Swearwords","Risk","Communities","Conflict","Certainty","Achieve","Power","Ratio H1","Ratio H2")
           )
## 
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Sat, May 02, 2020 - 18:53:43
## \begin{table}[!htbp] \centering 
##   \caption{} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}}lcccc} 
## \\[-1.8ex]\hline \\[-1.8ex] 
## \\[-1.8ex] & \multicolumn{2}{c}{\textbf{normal}} & \multicolumn{2}{c}{\textbf{OLS}} \\ 
##  & \textbf{Full model H1} & \textbf{Full model H2} & \textbf{Ratio model H1} & \textbf{Ratio model H2} \\ 
## \hline \\[-1.8ex] 
##  Intercept & 1962.51$^{****}$ & 2019.18$^{****}$ & 1981.83$^{****}$ & 1998.71$^{****}$ \\ 
##   & (4.69) & (1.66) & (0.79) & (0.88) \\ 
##   Long words & 57.05$^{***}$ &  &  &  \\ 
##   & (19.31) &  &  &  \\ 
##   Cognitive processes & $-$267.28$^{****}$ &  &  &  \\ 
##   & (18.45) &  &  &  \\ 
##   Conceptual notions & 265.82$^{****}$ &  &  &  \\ 
##   & (30.41) &  &  &  \\ 
##   Principles & $-$227.80$^{****}$ &  &  &  \\ 
##   & (38.73) &  &  &  \\ 
##   Institutional processes & 211.03$^{****}$ &  &  &  \\ 
##   & (21.74) &  &  &  \\ 
##   Political parties & 417.57$^{**}$ &  &  &  \\ 
##   & (180.43) &  &  &  \\ 
##   We & $-$61.49$^{**}$ &  &  &  \\ 
##   & (29.33) &  &  &  \\ 
##   Assent & $-$909.34$^{****}$ &  &  &  \\ 
##   & (201.00) &  &  &  \\ 
##   Insight & 166.88$^{****}$ &  &  &  \\ 
##   & (41.51) &  &  &  \\ 
##   Third-person & 19.04 &  &  &  \\ 
##   & (47.50) &  &  &  \\ 
##   Family & 220.13$^{****}$ &  &  &  \\ 
##   & (66.59) &  &  &  \\ 
##   Religion & 283.73$^{****}$ &  &  &  \\ 
##   & (35.18) &  &  &  \\ 
##   Gendered & $-$5.66 &  &  &  \\ 
##   & (38.66) &  &  &  \\ 
##   Leisure & 146.59$^{****}$ &  &  &  \\ 
##   & (34.50) &  &  &  \\ 
##   Body & 80.55 &  &  &  \\ 
##   & (98.96) &  &  &  \\ 
##   Health & 59.36$^{*}$ &  &  &  \\ 
##   & (34.77) &  &  &  \\ 
##   Friends & 231.30$^{***}$ &  &  &  \\ 
##   & (75.28) &  &  &  \\ 
##   Home & 314.10$^{****}$ &  &  &  \\ 
##   & (61.21) &  &  &  \\ 
##   Pronouns & 48.70$^{**}$ &  &  &  \\ 
##   & (22.18) &  &  &  \\ 
##   Physical feel & 53.15 &  &  &  \\ 
##   & (119.10) &  &  &  \\ 
##   Food farm & 216.95$^{****}$ &  &  &  \\ 
##   & (44.75) &  &  &  \\ 
##   Money & 293.32$^{****}$ &  &  &  \\ 
##   & (27.27) &  &  &  \\ 
##   Festival & 113.54 &  &  &  \\ 
##   & (145.81) &  &  &  \\ 
##   Elites & 288.82$^{**}$ &  &  &  \\ 
##   & (112.10) &  &  &  \\ 
##   Non-elites & 98.99$^{**}$ &  &  &  \\ 
##   & (41.44) &  &  &  \\ 
##   Short sentences & 256.11$^{****}$ &  &  &  \\ 
##   & (51.31) &  &  &  \\ 
##   Numbers & 29.52 &  &  &  \\ 
##   & (43.30) &  &  &  \\ 
##   Past focus & $-$174.05$^{****}$ &  &  &  \\ 
##   & (26.51) &  &  &  \\ 
##   Cultural nationalism & 321.92$^{****}$ &  &  &  \\ 
##   & (51.93) &  &  &  \\ 
##   Time & 273.56$^{****}$ &  &  &  \\ 
##   & (23.67) &  &  &  \\ 
##   I and you & 268.06$^{****}$ &  &  &  \\ 
##   & (33.25) &  &  &  \\ 
##   Electoral processes & 134.55 &  &  &  \\ 
##   & (115.79) &  &  &  \\ 
##   Personal governance & 279.84$^{****}$ &  &  &  \\ 
##   & (72.27) &  &  &  \\ 
##   Rhetorical questions & 313.35$^{****}$ &  &  &  \\ 
##   & (83.83) &  &  &  \\ 
##   Future focus & $-$9.87 &  &  &  \\ 
##   & (40.46) &  &  &  \\ 
##   Personal reward & 251.98$^{***}$ &  &  &  \\ 
##   & (79.77) &  &  &  \\ 
##   Motion & 110.97$^{***}$ &  &  &  \\ 
##   & (35.15) &  &  &  \\ 
##   Positive emotions &  & $-$133.14$^{****}$ &  &  \\ 
##   &  & (24.95) &  &  \\ 
##   Tentative &  & $-$842.88$^{****}$ &  &  \\ 
##   &  & (38.88) &  &  \\ 
##   Negative emotions &  & $-$1022.60$^{****}$ &  &  \\ 
##   &  & (73.40) &  &  \\ 
##   Anger &  & 671.68$^{****}$ &  &  \\ 
##   &  & (95.64) &  &  \\ 
##   Anxiety &  & 482.79$^{****}$ &  &  \\ 
##   &  & (81.50) &  &  \\ 
##   Sadness &  & 458.92$^{****}$ &  &  \\ 
##   &  & (123.55) &  &  \\ 
##   Swearwords &  & 853.53 &  &  \\ 
##   &  & (1394.31) &  &  \\ 
##   Risk &  & 230.38$^{***}$ &  &  \\ 
##   &  & (75.39) &  &  \\ 
##   Communities &  & 137.62$^{***}$ &  &  \\ 
##   &  & (47.33) &  &  \\ 
##   Conflict &  & $-$467.18$^{****}$ &  &  \\ 
##   &  & (38.79) &  &  \\ 
##   Certainty &  & $-$84.78$^{**}$ &  &  \\ 
##   &  & (42.10) &  &  \\ 
##   Achieve &  & 68.67$^{***}$ &  &  \\ 
##   &  & (24.18) &  &  \\ 
##   Power &  & 128.96$^{****}$ &  &  \\ 
##   &  & (20.31) &  &  \\ 
##   Ratio H1 &  &  & 9.65$^{****}$ &  \\ 
##   &  &  & (0.54) &  \\ 
##   Ratio H2 &  &  &  & $-$1.12$^{****}$ \\ 
##   &  &  &  & (0.25) \\ 
##  N & 4199 & 4199 & 4199 & 4199 \\ 
## R-squared &  &  & 0.07 & 0.005 \\ 
## Adj. R-squared &  &  & 0.07 & 0.005 \\ 
## Log Likelihood & $-$16697.66 & $-$16937.73 &  &  \\ 
## Residual Std. Error (df = 4197) &  &  & 18.15 & 18.78 \\ 
## F Statistic (df = 1; 4197) &  &  & 315.75$^{****}$ & 20.50$^{****}$ \\ 
## AIC & 33471.32 & 33903.46 &  &  \\ 
## \hline \\[-1.8ex] 
## \multicolumn{5}{l}{$^{***}$p $<$ .01; $^{**}$p $<$ .05; $^{*}$p $<$ .1} \\ 
## \multicolumn{5}{l}{Standard errors are in parentheses. The full and ratio models (H1 and H2) are based on yearly time series.} \\ 
## \end{tabular} 
## \end{table}

Contextualization of the Features of the populist dictionary

#Method: Below is an example of the target-word collocations performed on the 'seed' features of the LIWC dictionary and used to generate the 'extension' features of the populist dictionary (level 5)

nostoptokssubworkcorpus <- tokens_select(ngramstokssubworkcorpus, pattern = stopwords('en'), selection = 'remove', case_insensitive = TRUE)
notpuncnostoptokssubworkcorpus <- nostoptokssubworkcorpus %>% tokens_remove('[\\p{P}\\p{S}]', valuetype = 'regex', padding = TRUE)
v2.1 <- c("abnormal", "abnormality", "absolute",    "absolutely",   "accept",   "acceptance",   "accepted", "accepting",    "accepts",  "accountability",   "accurate","accurately",    "acknowledge", "acknowledge", "activate","activate", "actually",    "adjust", "adjusting","adjusting", "admit", "admits",   "admitted", "admitting",    "affect",   "affected", "affecting",    "affects",  "afterthought", "afterthoughts",    "against",  "aggravate","aggravates","aggravating", "aggravated",   "ain't",    "aint", "all",  "allot",    "almost",   "allow", "allows", "allowing", "allowed",   "alot", "alternative", "alternatives", "although",  "altogether",   "always",   "ambiguous", "ambiguity", "ambiguity", "analysis","analyses",   "analytical", "analytic", "answer", "answers",  "any",  "anybody",  "anyhow",   "anyone","anyones", "anything", "anytime",  "anywhere", "apart",    "apparent", "apparently",   "appear",   "appeared", "appearing",    "appears",  "appreciate","appreciated", "apprehensive", "approximate", "approximated", "approximation", "approximatively",  "arbitrary",    "aren't",   "arent",    "assume", "assumes",    "assure","assures", "assurance",    "attention", "attentive", "attentionate",   "attribute","attributes",   "aware", "awareness", "barely", "based",    "basis",    "bc",   "became",   "because",  "become",   "becomes",  "becoming", "belief", "beliefs", "believe", "believed", "believes", "believing",    "besides",  "bet",  "bets", "betting",  "blatant", "blatantely",    "blur","blurred",   "bosses",   "but",  "can't",    "cannot",   "cant", "category", "categories",   "cause", "caused", "causes", "causing", "certain",  "chance",   "chances", "change",    "change","changed", "changes",  "changing", "choice", "choices",    "choose", "chooses",    "clarify", "clarified", "clarification",    "clear",    "clearly",  "closure",  "clue", "coherent", "coherence",    "commit",   "commited", "commitment", "commitments",    "commits",  "committed",    "committing",   "compel", "compels", "compelling",  "complete", "completed",    "completely",   "completes",    "complex",  "complexity",   "compliance",   "compliant",    "complicate",   "complicated",  "complicates",  "complicating", "complication", "complications",    "complied", "complies", "comply", "complies", "complying",  "comprehsive", "comprehend", "comprehending",   "concentrate", "concentrating", "concentrated", "conclude", "concluded", "concluding",  "conclusion", "conclusions", "concluded", "conclusive", "confess", "confessed", "confession",   "confidence",   "confident",    "confidently",  "confuse",  "confused", "confuses", "confusing",    "confusion", "confusions",  "conscious", "consciously", "consequence", "consequences",  "consider", "consideration",    "considered",   "considering",  "considers",    "contemplate", "contemplating", "contingent",   "control",  "convince", "convinces", "convinced", "convincing", "correct", "correction", "corrections", "correlate", "correlates", "correlation",   "cos",  "could",    "could've", "couldn't", "couldnt",  "couldve",  "coz",  "create",   "created",  "creates",  "creating", "creation", "creations",    "creative", "creativity",   "curious", "curiosity", "curiosly", "cuz",  "deceive", "deceives", "deceiving", "decide", "decides", "deciding",    "decided",  "decides",  "deciding", "decision", "decisions", "decisive",    "deduction", "deductive", "deductions", "deductively",  "define",   "defined",  "defines",  "defining", "definite", "definitely",   "definition",   "definitive", "definitively",   "depend",   "depended", "depending",    "depends", "desire", "desires", "desirable",    "despite",  "determination",    "determine",    "determined",   "determines",   "determining",  "diagnose", "diagnoses", "diagnosed",   "diagnosis",    "didn't",   "didnt",    "differ",   "differed", "difference", "differences",    "different", "differential",    "differentiation", "differentiated",    "differently",  "differing",    "differs",  "directly", "discern", "discerns", "discerning",    "disclose", "disclosed", "disclosing",  "discover", "discovers", "discovering", "disillusion", "disillusions",  "disorient", "disorients", "disorienting",  "dissimilar",   "distinct", "distinctive",  "distinguish", "distinguishes", "distinguishing",  "distract", "distracted", "distraction",  "doubt", "doubts", "doubting", "dreams", "dubious")
          
toksv2.1 <- tokens_keep(notpuncnostoptokssubworkcorpus, phrase(v2.1), window = 10, valuetype="fixed")
toksnov2.1 <- tokens_remove(notpuncnostoptokssubworkcorpus, phrase(v2.1), window = 10, valuetype="fixed")
dfmattoksv2.1 <- dfm(toksv2.1)
#head(toksnov2.1)
dfmattoksv2.1perpm <- dfm_group(dfmattoksv2.1, groups = "loc")
dfmattoksnov2.1 <- dfm(toksnov2.1)
dfmattoksnov2.1perpm <- dfm_group(dfmattoksnov2.1, groups = "loc")
tstatkeyv2.1 <- textstat_keyness(rbind(dfmattoksv2.1perpm, dfmattoksnov2.1perpm), seq_len(ndoc(dfmattoksv2.1perpm)))
tstatkeyv2.1subset <- tstatkeyv2.1[tstatkeyv2.1$n_target > 10, ]
head(tstatkeyv2.1subset, 1000)
##                feature        chi2            p n_target n_reference
## 1               change 8474.863204 0.000000e+00     5254           0
## 2               become 8009.794870 0.000000e+00     4966           0
## 3            different 6458.385283 0.000000e+00     4005           0
## 4              believe 6135.595021 0.000000e+00     3805           0
## 5               always 5399.741064 0.000000e+00     3349           0
## 6              certain 4543.047388 0.000000e+00     2818           0
## 7            attention 4043.000007 0.000000e+00     2508           0
## 8               create 3822.033386 0.000000e+00     2371           0
## 9                based 3396.267224 0.000000e+00     2107           0
## 10          commitment 2994.738323 0.000000e+00     1858           0
## 11             changes 2972.163726 0.000000e+00     1844           0
## 12               aware 2651.297225 0.000000e+00     1645           0
## 13             created 2543.273211 0.000000e+00     1578           0
## 14            anything 2533.599576 0.000000e+00     1572           0
## 15               basis 2490.068541 0.000000e+00     1545           0
## 16          confidence 2432.027978 0.000000e+00     1509           0
## 17            consider 2399.783623 0.000000e+00     1489           0
## 18           committed 2373.988347 0.000000e+00     1473           0
## 19               doubt 2324.010524 0.000000e+00     1442           0
## 20               clear 2217.608431 0.000000e+00     1376           0
## 21            decision 2212.772047 0.000000e+00     1373           0
## 22             becomes 2211.159920 0.000000e+00     1372           0
## 23              almost 2188.590223 0.000000e+00     1358           0
## 24               cause 2178.917539 0.000000e+00     1352           0
## 25             decided 2112.821556 0.000000e+00     1311           0
## 26             changed 2043.502680 0.000000e+00     1268           0
## 27             control 1995.141461 0.000000e+00     1238           0
## 28            changing 1977.409176 0.000000e+00     1227           0
## 29              became 1775.912061 0.000000e+00     1102           0
## 30            complete 1704.987753 0.000000e+00     1058           0
## 31           decisions 1682.421220 0.000000e+00     1044           0
## 32              assure 1674.361778 0.000000e+00     1039           0
## 33            although 1663.078589 0.000000e+00     1032           0
## 34           confident 1540.577670 0.000000e+00      956           0
## 35          considered 1477.716970 0.000000e+00      917           0
## 36              accept 1469.657985 0.000000e+00      912           0
## 37            creating 1442.257570 0.000000e+00      895           0
## 38             despite 1371.339817 0.000000e+00      851           0
## 39            becoming 1326.211063 0.000000e+00      823           0
## 40              desire 1319.764144 0.000000e+00      819           0
## 41            affected 1279.471162 0.000000e+00      794           0
## 42            accepted 1264.965799 0.000000e+00      785           0
## 43               allow 1242.402016 0.000000e+00      771           0
## 44          difference 1216.615009 0.000000e+00      755           0
## 45              anyone 1195.663201 0.000000e+00      742           0
## 46          completely 1169.876528 0.000000e+00      726           0
## 47                cant 1165.041547 0.000000e+00      723           0
## 48              dreams 1155.371605 0.000000e+00      717           0
## 49              decide 1102.187386 0.000000e+00      684           0
## 50         differences 1090.905986 0.000000e+00      677           0
## 51           awareness 1079.624621 0.000000e+00      670           0
## 52              answer 1073.178142 0.000000e+00      666           0
## 53          determined 1068.343291 0.000000e+00      663           0
## 54       determination 1053.838776 0.000000e+00      654           0
## 55             clearly 1013.548763 0.000000e+00      629           0
## 56           completed 1002.267640 0.000000e+00      622           0
## 57              belief  995.821299 0.000000e+00      618           0
## 58             allowed  992.598134 0.000000e+00      616           0
## 59            directly  974.870773 0.000000e+00      605           0
## 60             correct  965.201340 0.000000e+00      599           0
## 61             complex  961.978202 0.000000e+00      597           0
## 62       consideration  955.531934 0.000000e+00      593           0
## 63              chance  939.416313 0.000000e+00      583           0
## 64            creative  934.581641 0.000000e+00      580           0
## 65            creation  881.400675 0.000000e+00      547           0
## 66             anybody  878.177612 0.000000e+00      545           0
## 67            actually  860.450813 0.000000e+00      534           0
## 68        consequences  844.335617 0.000000e+00      524           0
## 69            anywhere  833.055023 0.000000e+00      517           0
## 70           conscious  831.443512 0.000000e+00      516           0
## 71             climate  786.333674 0.000000e+00      805         180
## 72           convinced  765.372197 0.000000e+00      475           0
## 73          appreciate  762.149237 0.000000e+00      473           0
## 74             depends  758.926280 0.000000e+00      471           0
## 75          conclusion  723.473941 0.000000e+00      449           0
## 76         alternative  676.741844 0.000000e+00      420           0
## 77          creativity  667.073210 0.000000e+00      414           0
## 78            believed  662.238903 0.000000e+00      411           0
## 79              affect  652.570308 0.000000e+00      405           0
## 80             besides  633.233195 0.000000e+00      393           0
## 81          definitely  623.564678 0.000000e+00      387           0
## 82              causes  612.284773 0.000000e+00      380           0
## 83              choice  581.668067 0.000000e+00      361           0
## 84          absolutely  578.445271 0.000000e+00      359           0
## 85              depend  573.611083 0.000000e+00      356           0
## 86         considering  551.051622 0.000000e+00      342           0
## 87              caused  538.160564 0.000000e+00      334           0
## 88               didnt  523.658179 0.000000e+00      325           0
## 89              choose  512.378587 0.000000e+00      318           0
## 90            analysis  507.544487 0.000000e+00      315           0
## 91      accountability  468.871919 0.000000e+00      291           0
## 92         concentrate  449.535790 0.000000e+00      279           0
## 93           assurance  438.256430 0.000000e+00      272           0
## 94             answers  433.422429 0.000000e+00      269           0
## 95            conclude  420.531792 0.000000e+00      261           0
## 96             creates  386.694088 0.000000e+00      240           0
## 97              appear  375.414924 0.000000e+00      233           0
## 98          acceptance  375.414924 0.000000e+00      233           0
## 99             defined  344.800227 0.000000e+00      214           0
## 100          desirable  331.909906 0.000000e+00      206           0
## 101        complicated  331.909906 0.000000e+00      206           0
## 102          determine  323.853479 0.000000e+00      201           0
## 103        commitments  299.684306 0.000000e+00      186           0
## 104             commit  299.684306 0.000000e+00      186           0
## 105            appears  293.239220 0.000000e+00      182           0
## 106             doubts  293.239220 0.000000e+00      182           0
## 107            affects  285.182879 0.000000e+00      177           0
## 108              admit  283.571613 0.000000e+00      176           0
## 109           definite  267.458993 0.000000e+00      166           0
## 110        differently  265.847735 0.000000e+00      165           0
## 111            beliefs  265.847735 0.000000e+00      165           0
## 112          accepting  256.180201 0.000000e+00      159           0
## 113             define  256.180201 0.000000e+00      159           0
## 114            choices  249.735193 0.000000e+00      155           0
## 115          affecting  246.512694 0.000000e+00      153           0
## 116         atmosphere  246.268487 0.000000e+00      573         326
## 117           believes  244.901445 0.000000e+00      152           0
## 118             assume  238.456457 0.000000e+00      148           0
## 119         definition  238.456457 0.000000e+00      148           0
## 120           discover  235.233968 0.000000e+00      146           0
## 121           decisive  233.622724 0.000000e+00      145           0
## 122          situation  229.137144 0.000000e+00     1586        1490
## 123       concentrated  223.955277 0.000000e+00      139           0
## 124        consequence  223.955277 0.000000e+00      139           0
## 125            causing  223.955277 0.000000e+00      139           0
## 126           category  222.344038 0.000000e+00      138           0
## 127        appreciated  220.732800 0.000000e+00      137           0
## 128        acknowledge  212.676621 0.000000e+00      132           0
## 129              apart  204.620460 0.000000e+00      127           0
## 130             differ  201.398001 0.000000e+00      125           0
## 131           convince  191.730640 0.000000e+00      119           0
## 132           allowing  190.119416 0.000000e+00      118           0
## 133         altogether  186.896969 0.000000e+00      116           0
## 134           appeared  185.285747 0.000000e+00      115           0
## 135          concluded  185.285747 0.000000e+00      115           0
## 136          confusion  183.674526 0.000000e+00      114           0
## 137           distinct  183.674526 0.000000e+00      114           0
## 138        distinctive  182.063305 0.000000e+00      113           0
## 139         complexity  180.452085 0.000000e+00      112           0
## 140           admitted  178.840866 0.000000e+00      111           0
## 141           absolute  178.840866 0.000000e+00      111           0
## 142         categories  175.618430 0.000000e+00      109           0
## 143                can  173.106716 0.000000e+00    10478       14262
## 144        conclusions  170.784780 0.000000e+00      106           0
## 145               else  167.089978 0.000000e+00      672         517
## 146             anyhow  165.951138 0.000000e+00      103           0
## 147        consciously  162.728713 0.000000e+00      101           0
## 148            desires  157.895081 0.000000e+00       98           0
## 149             adjust  157.895081 0.000000e+00       98           0
## 150         conditions  154.436268 0.000000e+00      783         662
## 151             things  152.479487 0.000000e+00     2385        2723
## 152        environment  148.684718 0.000000e+00     1367        1390
## 153           defining  143.394224 0.000000e+00       89           0
## 154         compelling  141.783022 0.000000e+00       88           0
## 155            chances  133.727019 0.000000e+00       83           0
## 156             policy  131.290151 0.000000e+00     2031        2314
## 157           accurate  130.504623 0.000000e+00       81           0
## 158          curiosity  130.504623 0.000000e+00       81           0
## 159           problems  127.276293 0.000000e+00     2760        3330
## 160          depending  119.226259 0.000000e+00       74           0
## 161         apparently  114.392686 0.000000e+00       71           0
## 162             allows  114.392686 0.000000e+00       71           0
## 163           deciding  112.781496 0.000000e+00       70           0
## 164               firm  112.598233 0.000000e+00      338         225
## 165             barely  111.170307 0.000000e+00       69           0
## 166          believing  107.947931 0.000000e+00       67           0
## 167             compel  106.336744 0.000000e+00       66           0
## 168          considers  106.336744 0.000000e+00       66           0
## 169            assumes  104.725558 0.000000e+00       65           0
## 170            curious  104.725558 0.000000e+00       65           0
## 171         government  104.124127 0.000000e+00     6642        9080
## 172      circumstances  103.383961 0.000000e+00      424         329
## 173               paid  103.105655 0.000000e+00      356         255
## 174          difficult  102.826076 0.000000e+00     1075        1128
## 175          adversely  101.812693 0.000000e+00       81           9
## 176        determining  101.503188 0.000000e+00       63           0
## 177           apparent  101.503188 0.000000e+00       63           0
## 178            defines  101.503188 0.000000e+00       63           0
## 179         concluding   99.892004 0.000000e+00       62           0
## 180         compliance   98.280820 0.000000e+00       61           0
## 181       alternatives   96.669638 0.000000e+00       60           0
## 182            accepts   96.669638 0.000000e+00       60           0
## 183           confused   95.058456 0.000000e+00       59           0
## 184         aggravated   93.447275 0.000000e+00       58           0
## 185         committing   91.836094 0.000000e+00       57           0
## 186        distinguish   90.224915 0.000000e+00       56           0
## 187      concentrating   88.613736 0.000000e+00       55           0
## 188         attributes   87.002558 0.000000e+00       54           0
## 189               draw   86.739082 0.000000e+00      344         263
## 190           attitude   84.411102 0.000000e+00      435         370
## 191         enterprise   83.611072 0.000000e+00      421         355
## 192             firmly   83.332387 0.000000e+00      236         152
## 193            society   82.521854 0.000000e+00     2498        3158
## 194            decides   80.557852 0.000000e+00       50           0
## 195              quite   80.189083 0.000000e+00      661         653
## 196           approach   78.458117 0.000000e+00     1023        1127
## 197              final   77.377210 0.000000e+00      219         141
## 198            clarify   75.724330 0.000000e+00       47           0
## 199          attitudes   75.288536 0.000000e+00      197         121
## 200         correction   74.113157 0.000000e+00       46           0
## 201               self   72.148753 0.000000e+00      902         985
## 202             future   70.283876 0.000000e+00     2193        2783
## 203            reality   70.281005 0.000000e+00      423         380
## 204                may   70.156787 0.000000e+00     3327        4425
## 205          processes   68.112346 1.110223e-16      537         524
## 206          questions   67.921112 2.220446e-16      468         439
## 207           question   67.020791 2.220446e-16     1649        2027
## 208        confidently   66.057306 4.440892e-16       41           0
## 209                pay   65.779541 5.551115e-16      728         774
## 210        discovering   64.446138 9.992007e-16       40           0
## 211         comprehend   64.446138 9.992007e-16       40           0
## 212     differentiated   64.446138 9.992007e-16       40           0
## 213              taken   64.215697 1.110223e-15     2145        2745
## 214          necessary   63.476994 1.665335e-15     1075        1245
## 215              broad   63.225161 1.887379e-15      305         253
## 216            acutely   62.461975 2.664535e-15       45           3
## 217        fundamental   62.237886 2.997602e-15      380         343
## 218      complications   61.223803 5.107026e-15       38           0
## 219          creations   61.223803 5.107026e-15       38           0
## 220              fully   61.190116 5.218048e-15      638         669
## 221              thing   60.977366 5.773160e-15     1401        1705
## 222          conducive   60.832867 6.217249e-15      141          80
## 223        contemplate   59.612637 1.154632e-14       37           0
## 224         convincing   59.612637 1.154632e-14       37           0
## 225          political   59.233463 1.398881e-14     2067        2659
## 226            opinion   58.292593 2.253753e-14      410         387
## 227             matter   58.241254 2.320366e-14     1503        1860
## 228               view   56.392306 5.939693e-14     1129        1345
## 229          differing   56.390307 5.939693e-14       35           0
## 230          arbitrary   56.390307 5.939693e-14       35           0
## 231               fact   56.245838 6.394885e-14     1580        1978
## 232              abled   55.852463 7.815970e-14       56          12
## 233             social   55.468360 9.492407e-14     2461        3251
## 234               must   55.270613 1.050271e-13     6099        8681
## 235             issues   55.269333 1.051381e-13     1218        1473
## 236              world   54.877217 1.283418e-13     7451       10739
## 237           ultimate   54.755903 1.364464e-13      163         108
## 238          structure   54.197230 1.812994e-13      400         383
## 239           peaceful   53.474483 2.620126e-13      564         593
## 240        corrections   53.167980 3.061995e-13       33           0
## 241            destiny   52.691062 3.903544e-13      275         235
## 242           mistakes   52.475043 4.357625e-13      172         120
## 243            ability   52.198830 5.015988e-13      391         376
## 244               make   52.152178 5.135892e-13     3495        4797
## 245           entirely   51.831058 6.048495e-13      284         247
## 246          appearing   51.556818 6.955547e-13       32           0
## 247       apprehensive   51.556818 6.955547e-13       32           0
## 248            commits   51.556818 6.955547e-13       32           0
## 249             static   51.498331 7.165379e-13      108          57
## 250          proposals   50.290186 1.326161e-12      275         239
## 251            factors   50.047844 1.500466e-12      289         256
## 252         contingent   49.945656 1.580625e-12       31           0
## 253       increasingly   49.239195 2.265743e-12      302         273
## 254              bring   48.388438 3.496203e-12     1387        1741
## 255              parts   48.375723 3.518963e-12      745         848
## 256           depended   48.334495 3.593792e-12       30           0
## 257          therefore   47.997067 4.268585e-12     2302        3065
## 258              wrong   47.815040 4.683809e-12      604         661
## 259              faith   47.139396 6.611378e-12      670         751
## 260       nevertheless   46.889301 7.511214e-12      265         233
## 261         accurately   46.723335 8.175016e-12       29           0
## 262         perception   46.271176 1.029676e-11      149         103
## 263         indirectly   45.602631 1.448464e-11       49          12
## 264                try   45.525766 1.506439e-11      879        1041
## 265          sincerely   45.161520 1.814349e-11      308         288
## 266          attribute   45.112175 1.860645e-11       28           0
## 267              right   44.668742 2.333533e-11     1669        2164
## 268           differed   43.501017 4.237388e-11       27           0
## 269          clarified   43.501017 4.237388e-11       27           0
## 270             nature   43.260268 4.792167e-11      755         879
## 271            pattern   43.103535 5.191836e-11      182         143
## 272              issue   42.698146 6.387280e-11      814         962
## 273           possible   41.923268 9.492629e-11     1495        1928
## 274           coherent   41.889859 9.656220e-11       26           0
## 275          completes   41.889859 9.656220e-11       26           0
## 276            succeed   41.801628 1.010193e-10      309         296
## 277          consensus   41.280002 1.319116e-10      325         317
## 278          accession   41.152638 1.407932e-10       43          10
## 279            suicide   40.646086 1.824523e-10       55          19
## 280            confuse   40.278701 2.201965e-10       25           0
## 281          aggravate   40.278701 2.201965e-10       25           0
## 282         determines   40.278701 2.201965e-10       25           0
## 283               harm   40.123320 2.384257e-10      127          87
## 284            confess   38.667544 5.024955e-10       24           0
## 285            chooses   38.667544 5.024955e-10       24           0
## 286              rules   38.471403 5.556188e-10      267         251
## 287         inevitable   38.247836 6.230615e-10      149         113
## 288           thinking   38.228890 6.291403e-10      887        1081
## 289            totally   37.380521 9.718799e-10      214         189
## 290         situations   37.124315 1.108330e-09      169         137
## 291            dubious   37.056388 1.147620e-09       23           0
## 292        correlation   37.056388 1.147620e-09       23           0
## 293             merits   37.053471 1.149338e-09       62          27
## 294            matters   36.701778 1.376539e-09      607         700
## 295            process   36.700610 1.377363e-09     1570        2066
## 296              adapt   36.689262 1.385404e-09      103          66
## 297          perfectly   36.667530 1.400935e-09       94          57
## 298            problem   36.627389 1.430082e-09     1591        2097
## 299              trust   36.331025 1.664923e-09      458         501
## 300              might   36.182894 1.796405e-09     1026        1286
## 301             stated   36.120449 1.854901e-09      191         164
## 302          something   36.035385 1.937666e-09     1834        2456
## 303                say   35.731230 2.265038e-09     2709        3755
## 304            compels   35.445233 2.623236e-09       22           0
## 305                bet   35.445233 2.623236e-09       22           0
## 306         analytical   35.445233 2.623236e-09       22           0
## 307            closure   35.445233 2.623236e-09       22           0
## 308               fate   34.239998 4.871730e-09      111          77
## 309             damage   33.854351 5.939611e-09      148         118
## 310           abnormal   33.834079 6.001826e-09       21           0
## 311          diagnosis   33.834079 6.001826e-09       21           0
## 312             rather   33.800760 6.105500e-09      717         862
## 313              basic   33.584084 6.824889e-09      999        1260
## 314              drawn   33.179204 8.404457e-09      211         193
## 315        independent   33.088158 8.807351e-09      453         504
## 316               upon   32.902317 9.690769e-09     1010        1279
## 317           criteria   32.516496 1.181851e-08       50          20
## 318            logical   32.476990 1.206122e-08       66          34
## 319              never   32.453568 1.220746e-08     1109        1423
## 320         distracted   32.222925 1.374593e-08       20           0
## 321            discern   32.222925 1.374593e-08       20           0
## 322            extinct   32.222925 1.374593e-08       20           0
## 323        qualitative   31.910094 1.614759e-08       74          42
## 324          sometimes   31.896844 1.625811e-08      942        1187
## 325      opportunities   31.755108 1.748887e-08     1057        1352
## 326              views   31.546250 1.947461e-08      415         458
## 327           scenario   31.233177 2.288219e-08      134         106
## 328           policies   30.954189 2.641912e-08      860        1075
## 329         principles   30.830418 2.815893e-08      490         561
## 330          confusing   30.611772 3.151757e-08       19           0
## 331            anytime   30.611772 3.151757e-08       19           0
## 332              agree   30.597494 3.175036e-08      360         388
## 333          realities   30.362246 3.584369e-08      132         105
## 334           positive   30.354507 3.598698e-08      431         483
## 335              seems   30.352294 3.602806e-08      345         369
## 336             system   30.065090 4.177848e-08     2194        3032
## 337           economic   30.042466 4.226876e-08     3762        5396
## 338         democratic   29.769431 4.866046e-08      718         880
## 339         conviction   29.748346 4.919259e-08      175         156
## 340            aspects   29.447761 5.744436e-08      390         431
## 341          admitting   29.000619 7.235516e-08       18           0
## 342            assures   29.000619 7.235516e-08       18           0
## 343           analyses   29.000619 7.235516e-08       18           0
## 344              facts   28.974329 7.334383e-08      210         200
## 345            mindset   28.780269 8.107287e-08      102          74
## 346               laws   28.514468 9.300093e-08      417         470
## 347    recommendations   28.098591 1.152898e-07      219         213
## 348               jobs   27.803636 1.342735e-07      360         396
## 349                way   27.439768 1.620640e-07     3101        4420
## 350             either   27.429189 1.629530e-07      427         487
## 351        backgrounds   27.416870 1.639944e-07       32           9
## 352              shall   27.408950 1.646674e-07     1092        1426
## 353            fulfill   27.404583 1.650396e-07      183         170
## 354            blatant   27.389468 1.663347e-07       17           0
## 355    characteristics   26.944399 2.093930e-07       62          35
## 356       negotiations   26.535451 2.587460e-07      193         184
## 357            rapidly   26.384048 2.798421e-07      335         367
## 358            however   26.152163 3.155434e-07     1485        2009
## 359          reiterate   25.942380 3.517613e-07      105          81
## 360          direction   25.826211 3.735807e-07      933        1205
## 361          deduction   25.778317 3.829668e-07       16           0
## 362            without   25.773332 3.839571e-07     1513        2053
## 363       difficulties   25.732363 3.921949e-07      677         840
## 364              types   25.665306 4.060620e-07      158         143
## 365         challenges   25.518268 4.382141e-07     1019        1331
## 366           patterns   25.397586 4.665015e-07       98          74
## 367             action   25.145589 5.316110e-07     1032        1352
## 368             course   25.012486 5.696026e-07     1070        1408
## 369           stronger   24.922854 5.967084e-07      244         252
## 370              winds   24.847182 6.205970e-07       60          35
## 371             habits   24.515204 7.372577e-07      105          83
## 372            whether   24.289837 8.287518e-07     1582        2166
## 373       transparency   24.211654 8.630846e-07      177         169
## 374        obligations   24.186243 8.745474e-07      109          88
## 375      contemplating   24.167167 8.832532e-07       15           0
## 376           activate   24.167167 8.832532e-07       15           0
## 377          diagnosed   24.167167 8.832532e-07       15           0
## 378           fashions   24.013422 9.566646e-07       17           1
## 379            colombo   23.918882 1.004813e-06       72          48
## 380         impression   23.686054 1.134013e-06      140         125
## 381           integral   23.671978 1.142338e-06      168         159
## 382            mistake   23.381088 1.328785e-06      100          79
## 383         individual   23.122439 1.520064e-06      672         845
## 384            parties   22.867452 1.735662e-06      543         664
## 385           somewhat   22.835103 1.765122e-06      165         157
## 386          democracy   22.686755 1.906777e-06     1456        1991
## 387        approximate   22.556017 2.041042e-06       14           0
## 388              allot   22.556017 2.041042e-06       14           0
## 389          adjusting   22.556017 2.041042e-06       14           0
## 390            blurred   22.556017 2.041042e-06       14           0
## 391         instrument   22.551226 2.046139e-06      183         180
## 392        coexistence   22.527948 2.071084e-06      149         138
## 393         impossible   22.471309 2.133059e-06      134         120
## 394             extent   22.108897 2.576131e-06      530         649
## 395                now   22.061295 2.640811e-06     4342        6379
## 396             taking   21.989010 2.742162e-06     1032        1371
## 397            adverse   21.633776 3.299894e-06      103          85
## 398            subject   21.618276 3.326669e-06      436         520
## 399              habit   21.537368 3.470008e-06      182         181
## 400          implement   21.336558 3.853130e-06      262         285
## 401         peacefully   21.189491 4.160395e-06       82          62
## 402           autonomy   21.089897 4.382326e-06      104          87
## 403              rigid   21.078052 4.409500e-06       67          46
## 404          gradually   21.068179 4.432278e-06      247         266
## 405         parameters   20.876006 4.899942e-06       95          77
## 406               root   20.831341 5.015546e-06      156         150
## 407    interpretations   20.783511 5.142381e-06       31          12
## 408            reliant   20.405056 6.266401e-06       97          80
## 409            oneself   20.386201 6.328448e-06       70          50
## 410           whatever   20.375968 6.362379e-06      969        1289
## 411              chaos   20.323574 6.538996e-06       41          21
## 412               fear   20.319426 6.553186e-06      354         412
## 413           mindsets   20.259436 6.761914e-06       33          14
## 414           contrary   20.164613 7.105532e-06      118         105
## 415             stages   20.156212 7.136808e-06      123         111
## 416             method   20.083184 7.414575e-06      177         178
## 417                sin   19.965255 7.886224e-06       61          41
## 418           reaffirm   19.965255 7.886224e-06       61          41
## 419         compulsion   19.854674 8.355818e-06       57          37
## 420              treat   19.808122 8.561808e-06       83          65
## 421             unless   19.785542 8.663555e-06      483         593
## 422        disarmament   19.670035 9.203325e-06      323         372
## 423             faiths   19.640616 9.346117e-06       81          63
## 424               face   19.601318 9.540335e-06     1082        1460
## 425               fast   19.537702 9.863364e-06      458         559
## 426          otherwise   19.272970 1.132990e-05      322         372
## 427          expressed   19.004968 1.303786e-05      277         312
## 428             follow   18.857862 1.408294e-05      408         492
## 429            approve   18.822558 1.434603e-05       49          30
## 430             agents   18.819106 1.437202e-05       50          31
## 431            anxiety   18.794750 1.455673e-05       70          52
## 432         viewpoints   18.519860 1.681431e-05       35          17
## 433             slowly   18.434286 1.758651e-05       90          75
## 434     distinguishing   18.415103 1.776444e-05       13           0
## 435       differential   18.415103 1.776444e-05       13           0
## 436         acceptable   18.393709 1.796502e-05      112         101
## 437            neither   18.331048 1.856567e-05      313         363
## 438            feeling   18.317169 1.870141e-05      506         632
## 439            courage   18.312138 1.875086e-05      410         497
## 440             partly   18.296202 1.890838e-05      106          94
## 441            greater   18.289193 1.897807e-05     1233        1693
## 442             remain   18.162767 2.028052e-05      754         989
## 443          pluralism   18.107664 2.087595e-05       93          79
## 444              agent   18.104607 2.090949e-05       39          21
## 445            serious   18.100980 2.094936e-05      372         445
## 446          impatient   17.979380 2.233109e-05       41          23
## 447          principle   17.976852 2.236076e-05      247         275
## 448                spg   17.863335 2.373502e-05       51          33
## 449          occurring   17.809617 2.441461e-05       21           6
## 450           controls   17.738526 2.534414e-05      111         101
## 451         intentions   17.602395 2.722452e-05       94          81
## 452            radical   17.541412 2.811175e-05       63          46
## 453          according   17.366538 3.082046e-05      301         350
## 454             manner   17.282563 3.221294e-05      795        1054
## 455             errors   17.012921 3.712630e-05       28          12
## 456         accustomed   17.012921 3.712630e-05       28          12
## 457            methods   16.930939 3.876459e-05      413         507
## 458   responsibilities   16.879523 3.982895e-05      263         300
## 459             retain   16.815392 4.119780e-05       80          66
## 460       complication   16.810737 4.129896e-05       12           0
## 461         aggravates   16.810737 4.129896e-05       12           0
## 462           diagnose   16.810737 4.129896e-05       12           0
## 463      distinguishes   16.810737 4.129896e-05       12           0
## 464           disclose   16.810737 4.129896e-05       12           0
## 465               pace   16.759766 4.242335e-05      498         628
## 466              minor   16.753408 4.256574e-05       97          86
## 467               mind   16.747899 4.268950e-05     1186        1635
## 468             within   16.724981 4.320829e-05     1267        1756
## 469          agreement   16.634555 4.531781e-05      480         603
## 470     interpretation   16.555528 4.724606e-05       60          44
## 471              sense   16.553420 4.729861e-05      968        1313
## 472      consciousness   16.474034 4.932095e-05      174         183
## 473                quo   16.408658 5.105151e-05       68          53
## 474            happens   16.312484 5.370896e-05      328         391
## 475              ready   16.290483 5.433617e-05      433         538
## 476              house   16.234518 5.596505e-05     1273        1769
## 477           identity   16.172573 5.782533e-05      168         176
## 478        willingness   16.149202 5.854322e-05       53          37
## 479          diversity   16.123686 5.933725e-05      436         543
## 480             pursue   16.101563 6.003446e-05      221         246
## 481                far   16.071493 6.099535e-05     1490        2096
## 482         electorate   16.068905 6.107877e-05       35          19
## 483             keenly   16.068905 6.107877e-05       35          19
## 484           optimism   15.999913 6.334540e-05       90          79
## 485             seldom   15.979124 6.404483e-05       49          33
## 486          undergone   15.892128 6.705705e-05       46          30
## 487      fundamentally   15.858275 6.826736e-05       44          28
## 488          objective   15.849178 6.859632e-05      464         584
## 489            renewed   15.827874 6.937299e-05      108         101
## 490         continuity   15.753476 7.215525e-05       98          89
## 491         inevitably   15.730733 7.302794e-05      120         116
## 492           tensions   15.662560 7.570813e-05      205         226
## 493          framework   15.548536 8.041389e-05      376         461
## 494              whims   15.544690 8.057767e-05       18           5
## 495     responsiveness   15.544690 8.057767e-05       18           5
## 496         hindrances   15.544690 8.057767e-05       18           5
## 497       deliberately   15.536159 8.094210e-05       91          81
## 498             groups   15.515825 8.181742e-05      500         637
## 499      inconvenience   15.456451 8.442828e-05       29          14
## 500           hindutva   15.449640 8.473310e-05       15           3
## 501         objectives   15.432042 8.552576e-05      392         484
## 502         ideologies   15.330207 9.026163e-05       99          91
## 503         powerfully   15.326329 9.044707e-05       30          15
## 504             arrive   15.300563 9.168919e-05       71          58
## 505           reversal   15.267845 9.329117e-05       23           9
## 506            failure   15.252863 9.403412e-05      139         141
## 507          coherence   15.207606 9.631473e-05       11           0
## 508         complicate   15.207606 9.631473e-05       11           0
## 509            systems   15.080425 1.030261e-04      588         766
## 510             mutual   15.062520 1.040081e-04      388         480
## 511         motivation   14.942391 1.108442e-04       80          69
## 512            realize   14.935999 1.112203e-04      253         293
## 513       constitution   14.877120 1.147464e-04      762        1021
## 514               full   14.795243 1.198374e-04      989        1357
## 515         hesitation   14.747320 1.229221e-04       72          60
## 516              diary   14.719189 1.247700e-04       16           4
## 517            genuine   14.681650 1.272794e-04      155         163
## 518             urgent   14.666403 1.283131e-04      196         217
## 519        flexibility   14.649156 1.294926e-04       88          79
## 520           obsolete   14.587197 1.338207e-04       54          40
## 521            picture   14.529596 1.379749e-04      260         304
## 522             divert   14.519235 1.387357e-04       53          39
## 523          seriously   14.494339 1.405813e-04      160         170
## 524             regard   14.355154 1.513647e-04      699         932
## 525             except   14.337005 1.528309e-04      239         276
## 526          crucially   14.284085 1.571883e-04       21           8
## 527              point   14.263054 1.589545e-04     1131        1573
## 528       bureaucratic   14.262330 1.590157e-04       67          55
## 529              bound   14.228953 1.618609e-04      281         334
## 530               want   14.047708 1.782310e-04     2685        3939
## 531               ways   14.024496 1.804445e-04      788        1065
## 532         psychology   14.024234 1.804696e-04       44          30
## 533           pursuits   14.002235 1.825934e-04       22           9
## 534          challenge   13.996882 1.831140e-04      960        1320
## 535     constitutional   13.901296 1.926655e-04      195         218
## 536         disastrous   13.871093 1.957868e-04       38          24
## 537        attitudinal   13.843861 1.986447e-04       12           1
## 538         expression   13.817191 2.014842e-04      203         229
## 539              truth   13.793474 2.040437e-04      424         537
## 540        deteriorate   13.681469 2.165811e-04       18           6
## 548           narrower   13.574913 2.292286e-04       24          11
## 549            evident   13.528873 2.349211e-04      109         107
## 550          socialism   13.458577 2.438887e-04      188         210
## 551           equality   13.413255 2.498525e-04      389         489
## 552             impose   13.388296 2.531993e-04       91          85
## 553        presumption   13.286222 2.673637e-04       15           4
## 554        unshakeable   13.286222 2.673637e-04       15           4
## 555          desperate   13.175082 2.836963e-04       27          14
## 556             deeply   13.139241 2.891749e-04      350         435
## 557         procedures   13.137369 2.894640e-04      188         211
## 558        resolutions   13.112568 2.933213e-04       93          88
## 559              pacts   13.088167 2.971670e-04       28          15
## 560            drastic   13.088167 2.971670e-04       28          15
## 561          destinies   13.071196 2.998715e-04       42          29
## 562           conflict   13.052749 3.028395e-04      427         545
## 563             common   13.012717 3.093827e-04      995        1380
## 564          lifestyle   13.011452 3.095918e-04       53          41
## 565           perceive   12.966122 3.171783e-04       30          17
## 566         passionate   12.955902 3.189144e-04       39          26
## 567             happen   12.855712 3.364507e-04      555         731
## 568         championed   12.760468 3.540223e-04       16           5
## 569         structural   12.703635 3.649455e-04       70          61
## 570            careful   12.691496 3.673223e-04      124         128
## 571            actions   12.596330 3.865049e-04      203         233
## 572          agreeable   12.491833 4.087350e-04       13           3
## 573          necessity   12.473605 4.127427e-04      129         135
## 574            results   12.411258 4.267533e-04      536         706
## 575                beg   12.387282 4.322681e-04       67          58
## 576          carefully   12.361426 4.382958e-04      138         147
## 577              havoc   12.261039 4.625139e-04       24          12
## 578        preferences   12.261039 4.625139e-04       24          12
## 579              merit   12.233399 4.694160e-04       71          63
## 580     administrative   12.160566 4.881057e-04      242         288
## 581            adhered   12.154225 4.897678e-04       25          13
## 582          generally   12.141734 4.930590e-04      173         194
## 583               crux   12.069684 5.124838e-04       26          14
## 584              arise   12.064658 5.138673e-04      181         205
## 585            dissent   12.032418 5.228322e-04       38          26
## 586               easy   12.026060 5.246184e-04      433         559
## 593      revolutionary   11.999329 5.321970e-04      118         122
## 594          flowering   11.959281 5.437585e-04       36          24
## 595              think   11.939511 5.495591e-04     1783        2583
## 596          rejection   11.893659 5.632538e-04       33          21
## 597         procedural   11.887527 5.651111e-04       31          19
## 598             status   11.855759 5.748330e-04      257         310
## 599           position   11.848483 5.770833e-04      546         724
## 600         everything   11.846471 5.777072e-04      602         806
## 601         secularism   11.810437 5.889962e-04      228         270
## 602         particular   11.733437 6.138711e-04      733        1000
## 603       shortcomings   11.707334 6.225425e-04      101         101
## 604            durable   11.674816 6.335180e-04       71          64
## 605              paths   11.630136 6.489181e-04       80          75
## 606           existing   11.608047 6.566709e-04      287         353
## 607         settlement   11.578293 6.672618e-04      156         173
## 608          redundant   11.542510 6.802276e-04       20           9
## 609        fashionable   11.542510 6.802276e-04       20           9
## 610            turmoil   11.501143 6.955340e-04       43          32
## 611      accommodating   11.401214 7.339613e-04       15           5
## 612            profess   11.401214 7.339613e-04       15           5
## 613                law   11.364458 7.486291e-04      931        1298
## 614           weakness   11.336767 7.598750e-04       86          83
## 615     considerations   11.275253 7.854715e-04      101         102
## 616            opposed   11.256293 7.935354e-04      115         120
## 617         directions   11.247807 7.971716e-04      150         166
## 618              norms   11.243657 7.989558e-04       97          97
## 619          congenial   11.239278 8.008430e-04       22          11
## 620            consent   11.162875 8.345048e-04       61          53
## 621               form   11.122915 8.526766e-04      534         711
## 622           remained   11.096550 8.648849e-04      213         252
## 623         assumption   11.081471 8.719461e-04       36          25
## 624           focussed   11.057565 8.832607e-04       60          52
## 625        composition   11.036694 8.932601e-04       35          24
## 626          electoral   11.016207 9.031869e-04       79          75
## 627          viewpoint   10.994958 9.136007e-04       46          36
## 628          diligence   10.990223 9.159378e-04       25          14
## 629            virtues   10.962340 9.298234e-04       53          44
## 630    interdependence   10.948948 9.365675e-04       74          69
## 631        negotiation   10.934578 9.438598e-04       32          21
## 632         resentment   10.916713 9.530054e-04       27          16
## 633               aids   10.903836 9.596532e-04      105         108
## 634            ferment   10.900314 9.614794e-04       28          17
## 635         eventually   10.868028 9.783864e-04       86          84
## 636             impact   10.838195 9.942763e-04      425         554
## 637             settle   10.787303 1.021987e-03       77          73
## 638         witnessing   10.787303 1.021987e-03       77          73
## 640            willing   10.707658 1.066930e-03      235         284
## 641             values   10.486867 1.202260e-03      726         999
## 642      dispassionate   10.483179 1.204663e-03       13           4
## 643            resolve   10.480263 1.206566e-03      306         385
## 648            drought   10.405914 1.256124e-03      274         340
## 649         adaptation   10.391568 1.265921e-03       47          38
## 650             equity   10.384549 1.270742e-03      151         170
## 651           reflects   10.373833 1.278139e-03      114         121
## 652              tried   10.331610 1.307711e-03      423         554
## 653        politically   10.326443 1.311377e-03      100         103
## 654             viable   10.295376 1.333639e-03      110         116
## 655             hiatus   10.217519 1.391129e-03       20          10
## 656               dare   10.157602 1.437075e-03       67          62
## 657         ultimately   10.150328 1.442756e-03      314         398
## 658            weapons   10.138089 1.452366e-03      460         609
## 659         internally   10.137852 1.452554e-03       34          24
## 660          happening   10.132826 1.456519e-03      369         477
## 661              tough   10.130084 1.458687e-03       51          43
## 662          dangerous   10.120527 1.466270e-03      160         183
## 663            urgency   10.116635 1.469370e-03       91          92
## 664      disadvantages   10.113024 1.472252e-03       21          11
## 665      superstitious   10.068476 1.508278e-03       14           5
## 666              usher   10.045779 1.526974e-03       56          49
## 667           pakistan    9.987722 1.575874e-03      793        1103
## 668      categorically    9.977505 1.584643e-03       23          13
## 669         simplistic    9.923669 1.631668e-03       11           2
## 670    multilateralism    9.915455 1.638966e-03       25          15
## 671              slave    9.905421 1.647926e-03       26          16
## 672           regulate    9.905421 1.647926e-03       26          16
## 673         tremendous    9.899738 1.653023e-03      435         574
## 674             refuse    9.861804 1.687456e-03       41          32
## 675           protocol    9.861804 1.687456e-03       41          32
## 676            capable    9.859725 1.689364e-03      251         310
## 677              leads    9.845866 1.702138e-03      163         188
## 678            focused    9.814418 1.731490e-03      134         149
## 679         compromise    9.812233 1.733549e-03       92          94
## 680            economy    9.798788 1.746270e-03     1840        2697
## 681           overcome    9.787271 1.757241e-03      272         340
## 682       fundamentals    9.778956 1.765205e-03       40          31
## 683          interests    9.760245 1.783261e-03      572         776
## 684      nationalities    9.754842 1.788510e-03       15           6
## 685            averted    9.754842 1.788510e-03       15           6
## 686             devote    9.696563 1.846130e-03       91          93
## 687          essential    9.683341 1.859462e-03      709         980
## 688           constant    9.635739 1.908275e-03      161         186
## 689     implementation    9.610020 1.935186e-03      468         624
## 690              bagge    9.609597 1.935631e-03       11           3
## 691          cognizant    9.609597 1.935631e-03       11           3
## 692        disruptions    9.609597 1.935631e-03       11           3
## 693          registers    9.515912 2.036978e-03       16           7
## 694           deadline    9.515912 2.036978e-03       16           7
## 695           feasible    9.495246 2.060050e-03       70          67
## 696               open    9.465287 2.093967e-03      758        1055
## 697         irrelevant    9.444732 2.117565e-03       44          36
## 698            trouble    9.431922 2.132407e-03      178         210
## 699            consult    9.397247 2.173115e-03       35          26
## 700             others    9.376572 2.197762e-03     1339        1935
## 701       expectations    9.374890 2.199779e-03      253         315
## 702           slightly    9.371147 2.204276e-03       60          55
## 703        transferred    9.371147 2.204276e-03       60          55
## 704    professionalism    9.365079 2.211584e-03       55          49
## 705  misunderstandings    9.333758 2.249706e-03       17           8
## 706               cons    9.333758 2.249706e-03       17           8
## 707        proportions    9.328954 2.255610e-03       34          25
## 708          practical    9.307665 2.281971e-03      245         304
## 709          committee    9.273266 2.325227e-03      431         572
## 710   misunderstanding    9.264003 2.337016e-03       33          24
## 711            outside    9.248599 2.356757e-03      612         839
## 714            concern    9.205647 2.412697e-03      689         954
## 715             injury    9.145641 2.493113e-03       31          22
## 716              meted    9.120963 2.526969e-03       12           4
## 717              audit    9.104687 2.549553e-03       47          40
## 718        catastrophe    9.093134 2.565709e-03       30          21
## 719      relationships    9.075541 2.590510e-03       96         101
## 720        limitations    9.074006 2.592684e-03       82          83
## 721             points    9.069869 2.598557e-03      358         467
## 722            reforms    9.065986 2.604081e-03      524         710
## 723         plebiscite    9.045803 2.632986e-03       29          20
## 724      regimentation    9.018055 2.673257e-03       20          11
## 725        definitions    9.018055 2.673257e-03       20          11
## 726             keynes    9.018055 2.673257e-03       20          11
## 727            outlook    8.984122 2.723356e-03      207         252
## 728       transitional    8.969431 2.745341e-03       27          18
## 729        settlements    8.969431 2.745341e-03       27          18
## 730         unwavering    8.969431 2.745341e-03       27          18
## 731          incorrect    8.966432 2.749851e-03       21          12
## 732          reasoning    8.966432 2.749851e-03       21          12
## 733           rigidity    8.966432 2.749851e-03       21          12
## 734              frame    8.958168 2.762318e-03       81          82
## 735              spite    8.956545 2.764773e-03      300         384
## 736          persevere    8.923392 2.815412e-03       25          16
## 737        obstruction    8.917523 2.824474e-03       23          14
## 738            relying    8.914663 2.828900e-03       24          15
## 739               give    8.858739 2.916891e-03     2159        3202
## 740             moment    8.839373 2.948004e-03      487         657
## 741               slow    8.836197 2.953138e-03      128         144
## 742          certainly    8.828049 2.966353e-03      510         691
## 752      apprehensions    8.801080 3.010522e-03       44          37
## 753         subscribed    8.766673 3.067846e-03       13           5
## 754        unambiguous    8.766673 3.067846e-03       13           5
## 755        despondency    8.766673 3.067846e-03       13           5
## 756          corollary    8.766673 3.067846e-03       13           5
## 757               ncmp    8.766673 3.067846e-03       13           5
## 758            earnest    8.711094 3.162793e-03       86          89
## 759              brand    8.674589 3.226776e-03       71          70
## 760            rumours    8.647221 3.275607e-03       35          27
## 761         dedication    8.618092 3.328403e-03      235         293
## 762           divisive    8.610639 3.342050e-03       48          42
## 763          knowledge    8.589410 3.381235e-03     1200        1732
## 764                due    8.539131 3.475915e-03      760        1066
## 765             akalis    8.506423 3.538951e-03       14           6
## 766            ailment    8.506423 3.538951e-03       14           6
## 767                yet    8.484923 3.581017e-03     1002        1432
## 770             defeat    8.440529 3.669495e-03       97         104
## 771           tendency    8.433682 3.683338e-03      144         167
## 772           climatic    8.416488 3.718334e-03       32          24
## 773           survival    8.408047 3.735637e-03      141         163
## 774           outdated    8.407559 3.736641e-03       40          33
## 775           servants    8.402693 3.746655e-03      124         140
## 776         worthwhile    8.379007 3.795797e-03       76          77
## 777           rejected    8.347964 3.861197e-03       60          57
## 778             stable    8.346360 3.864607e-03      175         210
## 779          precisely    8.315574 3.930659e-03       86          90
## 780             calmly    8.314566 3.932840e-03       15           7
## 781          interplay    8.314566 3.932840e-03       15           7
## 782             robots    8.314566 3.932840e-03       15           7
## 783               pact    8.293122 3.979552e-03       45          39
## 784           resolute    8.277668 4.013565e-03       30          22
## 785         imbalances    8.263182 4.045715e-03       75          76
## 786            mandate    8.213930 4.157001e-03       95         102
## 787          impartial    8.213838 4.157212e-03       29          21
## 788          contained    8.211171 4.163327e-03       63          61
## 789              argue    8.188266 4.216220e-03       44          38
## 790           separate    8.180790 4.233632e-03      201         247
## 791            ignores    8.174004 4.249500e-03       16           8
## 792         reciprocal    8.174004 4.249500e-03       16           8
## 793              spoil    8.174004 4.249500e-03       16           8
## 794            evolves    8.174004 4.249500e-03       16           8
## 795           cautious    8.154349 4.295801e-03       28          20
## 796               mans    8.154349 4.295801e-03       28          20
## 797           speedily    8.150483 4.304969e-03       49          44
## 798          ecosystem    8.150483 4.304969e-03       49          44
## 799         collective    8.139536 4.331037e-03      306         397
## 800        bureaucracy    8.134806 4.342349e-03       81          84
## 801            obvious    8.131329 4.350684e-03      198         243
## 802             trends    8.129331 4.355482e-03      130         149
## 803          emissions    8.119014 4.380338e-03       58          55
## 804          sustained    8.116582 4.386219e-03      246         311
## 805         productive    8.112433 4.396269e-03      283         364
## 806        suggestions    8.103816 4.417218e-03      319         416
## 807        individuals    8.092935 4.443815e-03      269         344
## 808               iraq    8.083963 4.465867e-03       43          37
## 809             timing    8.072900 4.493215e-03       17           9
## 810         cordiality    8.072900 4.493215e-03       17           9
## 811              stems    8.072900 4.493215e-03       17           9
## 812             though    8.069631 4.501327e-03      581         802
## 813         possession    8.058415 4.529279e-03       53          49
## 814              human    8.054808 4.538305e-03     1867        2763
## 815           devoting    8.050760 4.548457e-03       26          18
## 816        convictions    8.050760 4.548457e-03       26          18
## 817            conform    8.050760 4.548457e-03       26          18
## 818             treaty    8.047973 4.555460e-03      159         189
## 819      controversial    8.008125 4.656792e-03       25          17
## 820             people    7.990754 4.701683e-03    12287       19162
## 821          reviewing    7.972818 4.748495e-03       24          16
## 822       interference    7.963916 4.771907e-03      134         155
## 823           dogmatic    7.957498 4.788857e-03       19          11
## 824      insignificant    7.957498 4.788857e-03       19          11
## 825        determinant    7.957498 4.788857e-03       19          11
## 826             wealth    7.952651 4.801699e-03      348         459
## 827             sorted    7.932350 4.855869e-03       20          12
## 828         achievable    7.932350 4.855869e-03       20          12
## 829       unproductive    7.929074 4.864669e-03       22          14
## 830        objectively    7.923797 4.878877e-03       21          13
## 831                inf    7.923797 4.878877e-03       21          13
## 832        essentially    7.850463 5.080768e-03      116         131
## 833        antagonisms    7.791939 5.247986e-03       11           4
## 834           orthodox    7.791939 5.247986e-03       11           4
## 835          minimised    7.791939 5.247986e-03       11           4
## 836          painfully    7.791939 5.247986e-03       11           4
## 837            achieve    7.780229 5.282109e-03      821        1165
## 838        instability    7.775993 5.294511e-03       55          52
## 839         prevailing    7.766133 5.323488e-03       67          67
## 840               suit    7.749862 5.371663e-03       59          57
## 841           segments    7.748221 5.376549e-03       63          62
## 842           investor    7.731184 5.427516e-03       74          76
## 848               sick    7.718886 5.464611e-03      103         114
## 849        indivisible    7.713591 5.480661e-03       45          40
## 850              vague    7.679584 5.584905e-03       32          25
## 851            warming    7.627110 5.749737e-03       80          84
## 852              swept    7.605175 5.820103e-03       44          39
## 853              exist    7.598828 5.840624e-03      233         295
## 854             submit    7.574268 5.920741e-03      133         155
## 855           sweeping    7.572404 5.926869e-03       38          32
## 856         priorities    7.563857 5.955040e-03      187         230
## 857             merely    7.504388 6.154886e-03      596         829
## 858        phraseology    7.501264 6.165572e-03       12           5
## 859           diffused    7.501264 6.165572e-03       12           5
## 860             adopts    7.501264 6.165572e-03       12           5
## 861        reciprocity    7.501264 6.165572e-03       12           5
## 862             umpire    7.501264 6.165572e-03       12           5
## 863            jayapur    7.501264 6.165572e-03       12           5
## 864             assert    7.496879 6.180601e-03       48          44
## 865               keep    7.493406 6.192531e-03      897        1283
## 866                npt    7.472493 6.264876e-03       37          31
## 867            remains    7.465685 6.288612e-03      391         525
## 868         synonymous    7.438840 6.383102e-03       29          22
## 869               type    7.423686 6.437080e-03      297         388
## 870             adhere    7.389481 6.560642e-03       42          37
## 871         simplicity    7.385053 6.576812e-03       47          43
## 872             doctor    7.367472 6.641423e-03      131         153
## 873             slight    7.364415 6.652722e-03       28          21
## 874               life    7.332873 6.770476e-03     2937        4437
## 875         regimented    7.296186 6.910115e-03       13           6
## 876             agenda    7.294413 6.916936e-03      302         396
## 877           coercion    7.293522 6.920369e-03       27          20
## 878           dynamics    7.293522 6.920369e-03       27          20
## 879             assess    7.288904 6.938180e-03       55          53
## 880             assets    7.287990 6.941709e-03      105         118
## 881               fair    7.278136 6.979892e-03      304         399
## 882             reform    7.277146 6.983740e-03      367         491
## 883        proposition    7.273413 6.998268e-03       46          42
## 884            require    7.246525 7.103835e-03      308         405
## 895          entangled    7.226630 7.182992e-03       26          19
## 896          interfere    7.218501 7.215596e-03       83          89
## 897        conditioned    7.205592 7.267677e-03       50          47
## 898       commonwealth    7.196262 7.305558e-03      200         250
## 899          societies    7.186896 7.343791e-03      316         417
## 900      automatically    7.182019 7.363778e-03       89          97
## 901         discontent    7.178954 7.376369e-03       34          28
## 902             normal    7.178853 7.376784e-03      195         243
## 903            verdict    7.175508 7.390550e-03       40          35
## 904              worse    7.167797 7.422388e-03       98         109
## 905           systemic    7.164298 7.436878e-03       25          18
## 906             liking    7.152249 7.487005e-03       14           7
## 907          ceasefire    7.152249 7.487005e-03       14           7
## 908        pressurised    7.152249 7.487005e-03       14           7
## 909               lies    7.108573 7.671614e-03      304         400
## 910           attached    7.105189 7.686111e-03       82          88
## 911    dissatisfaction    7.091744 7.743985e-03       49          46
## 915             bamboo    7.070640 7.835727e-03       61          61
## 916        disturbance    7.056122 7.899482e-03       23          16
## 917       compromising    7.056122 7.899482e-03       23          16
## 918        advertising    7.056122 7.899482e-03       23          16
## 919       irreversible    7.056122 7.899482e-03       23          16
## 920          overwhelm    7.053503 7.911039e-03       15           8
## 921            jurists    7.053503 7.911039e-03       15           8
## 922      intrinsically    7.053503 7.911039e-03       15           8
## 923            country    7.029756 8.016625e-03     8912       13852
## 924       developments    7.023161 8.046206e-03      283         370
## 925          identical    7.012059 8.096250e-03       22          15
## 926             effect    7.002657 8.138881e-03      307         405
## 927            varying    6.989493 8.198959e-03       32          26
## 928            caution    6.989493 8.198959e-03       32          26
## 929            marches    6.989103 8.200746e-03       16           9
## 930             selfie    6.989103 8.200746e-03       16           9
## 931         reaffirmed    6.976208 8.260043e-03       21          14
## 932         critically    6.963548 8.318689e-03       38          33
## 933              quick    6.953462 8.365721e-03       99         111
## 934            dictate    6.951415 8.375296e-03       17          10
## 935          tentative    6.951415 8.375296e-03       17          10
## 936         greenhouse    6.951415 8.375296e-03       17          10
## 937        terminology    6.950062 8.381633e-03       20          13
## 938               bold    6.950029 8.381786e-03       90          99
## 939             weaken    6.948148 8.390605e-03       96         107
## 940         insecurity    6.939745 8.430111e-03       43          39
## 941            implied    6.935498 8.450152e-03       19          12
## 942      deforestation    6.935498 8.450152e-03       19          12
## 943               grit    6.935498 8.450152e-03       19          12
## 944           glaciers    6.934914 8.452914e-03       18          11
## 945          pollution    6.924757 8.501055e-03      124         145
## 946          religious    6.921095 8.518482e-03      362         486
## 947              drift    6.897032 8.633899e-03       31          25
## 948          permanent    6.867145 8.779481e-03      118         137
## 949         undergoing    6.858432 8.822391e-03       37          32
## 950             mental    6.841116 8.908316e-03      115         133
## 951       apprehension    6.828992 8.968987e-03       42          38
## 952       complexities    6.806308 9.083640e-03       30          24
## 953          reactions    6.753961 9.353979e-03       36          31
## 954           evolving    6.751505 9.366864e-03      125         147
## 955           pursuing    6.746045 9.395572e-03      100         113
## 956           progress    6.728721 9.487259e-03     1742        2590
## 957           whenever    6.718672 9.540866e-03      357         480
## 958        questioning    6.717522 9.547020e-03       29          23
## 959             herbal    6.717522 9.547020e-03       29          23
## 960          realistic    6.706408 9.606706e-03       54          53
## 961           maintain    6.692311 9.682958e-03      252         327
## 962             making    6.667166 9.820520e-03     1207        1766
## 963      understanding    6.657801 9.872268e-03      637         898
## 967            attempt    6.640201 9.970267e-03      267         349
## 968              limit    6.635822 9.994805e-03      137         164
## 969           demanded    6.608301 1.015045e-02       40          36
## 970         disruption    6.608301 1.015045e-02       40          36
## 971          appraisal    6.608301 1.015045e-02       40          36
## 972           sections    6.603123 1.018001e-02      636         897
## 973             reason    6.563565 1.040877e-02      653         923
## 974             longer    6.561120 1.042307e-02      342         459
## 975             innate    6.546732 1.050770e-02       27          21
## 976             affirm    6.546732 1.050770e-02       27          21
## 977            probity    6.546732 1.050770e-02       27          21
## 978             judges    6.522450 1.065212e-02       80          87
## 979        necessarily    6.517042 1.068456e-02      161         198
## 986           socially    6.501793 1.077658e-02      109         126
## 987              order    6.494638 1.082003e-02      981        1422
## 988           agrarian    6.491065 1.084180e-02       56          56
## 989               need    6.488151 1.085959e-02     3457        5268
## 990            periods    6.482285 1.089549e-02       70          74
## 991          ingenuity    6.465318 1.100000e-02       26          20
## 992            unleash    6.465318 1.100000e-02       26          20
## 993           subjects    6.465064 1.100157e-02      148         180
## 994               ends    6.456763 1.105308e-02      130         155
## 995          everybody    6.439995 1.115789e-02      260         340
## 996            command    6.396292 1.143590e-02       88          98
## 997          doctrines    6.388847 1.148396e-02       38          34
## 998           governed    6.375150 1.157293e-02       55          55
## 999           theories    6.359251 1.167708e-02       51          50
## 1000             hence    6.356506 1.169516e-02      402         549
## 1001         reconcile    6.343834 1.177900e-02       32          27
## 1002            shadow    6.336788 1.182588e-02       72          77
## 1003         naturally    6.318160 1.195076e-02      254         332
## 1004          external    6.317459 1.195548e-02      300         399
## 1005           tobacco    6.312346 1.199001e-02       24          18
## 1006          managing    6.298235 1.208582e-02       78          85
## 1007            expert    6.288949 1.214930e-02       81          89
## 1008       disapproval    6.279072 1.221720e-02       11           5
## 1009             crime    6.277126 1.223063e-02      141         171
## 1010          pressure    6.270656 1.227537e-02      240         312
## 1011        difficulty    6.264919 1.231518e-02      215         276
## 1012             minds    6.248724 1.242828e-02      472         654
## 1022           spirits    6.241775 1.247714e-02       23          17
## 1023      passionately    6.241775 1.247714e-02       23          17
## 1024           pretend    6.241775 1.247714e-02       23          17
## 1025          exporter    6.241775 1.247714e-02       23          17
## 1026            polity    6.232050 1.254584e-02      138         167
## 1027         requiring    6.175976 1.294965e-02       22          16
## 1028          treating    6.175976 1.294965e-02       22          16
## 1029      helplessness    6.175976 1.294965e-02       22          16
## 1030        underlined    6.175976 1.294965e-02       22          16
## 1031            forces    6.172453 1.297546e-02      934        1354
## 1032       sovereignty    6.139220 1.322157e-02      100         115
## 1033         squabbles    6.130495 1.328697e-02       12           6
## 1034         diverting    6.130495 1.328697e-02       12           6
## 1035          meanings    6.130495 1.328697e-02       12           6
## 1036     realistically    6.130495 1.328697e-02       12           6
## 1037       neighbourly    6.130495 1.328697e-02       12           6
## 1038            icrier    6.130495 1.328697e-02       12           6
## 1039            layers    6.115746 1.339829e-02       21          15
## 1040         fertility    6.115746 1.339829e-02       21          15
## 1041              wing    6.074405 1.371545e-02       76          83
## 1042            solely    6.071947 1.373455e-02       40          37
## 1043          sensible    6.062066 1.381160e-02       20          14
## 1044       dislocation    6.062066 1.381160e-02       20          14
## 1045           reflect    6.050092 1.390557e-02      194         247
## 1046            favour    6.044763 1.394760e-02      168         210
## 1047          doubtful    6.034815 1.402642e-02       13           7
## 1048       conspicuous    6.034815 1.402642e-02       13           7
## 1049           privacy    6.034815 1.402642e-02       13           7
## 1050                tb    6.023869 1.411367e-02       44          42
## 1051         receptive    6.016166 1.417541e-02       19          13
## 1052            reckon    6.016166 1.417541e-02       19          13
## 1053       adversities    5.979600 1.447228e-02       18          12
## 1054       objectivity    5.979600 1.447228e-02       18          12
## 1055         transcend    5.979600 1.447228e-02       18          12
## 1056           abiding    5.978222 1.448359e-02       90         102
## 1057          resigned    5.977607 1.448865e-02       14           8
## 1058         piecemeal    5.977607 1.448865e-02       14           8
## 1059           hurdles    5.958191 1.464907e-02       84          94
## 1060           doubted    5.954371 1.468084e-02       17          11
## 1061         inhibited    5.954371 1.468084e-02       17          11
## 1062        resolutely    5.954371 1.468084e-02       17          11
## 1063             shape    5.953081 1.469158e-02      236         308
## 1064           divyang    5.950502 1.471309e-02       28          23
## 1065           confirm    5.949252 1.472353e-02       15           9
## 1066              pros    5.949252 1.472353e-02       15           9
## 1067       doctrinaire    5.943092 1.477508e-02       16          10
bon<-c()
bon2<-tstatkeyv2.1subset
for(j in 1:length(v2.1)){
    bon <- c(bon,which(tstatkeyv2.1subset[,1]==v2.1[j]))
}
bon<-sort(bon, decreasing=TRUE)
bon2<-bon2[-c(bon),]

#Method: Below is an example of the the calculation of the hypergeometric probability distribution of single features, which was used to identify overrepresented and underrepresented features among Prime Ministers (see the discussion section of the article)

plotspecif <-  specificities.distribution.plot(7799, 22957, 2199993, 8029517)

#plotspecif <-  specificities.distribution.plot(x, F, t, T)
#x: observed number of A words
#F: total number of A
#t: size of part
#T: size of corpus